Åouastrong
 Watering the life

Domestic Pumps

AQUASTRONG Co.,Ltd

About us

AOUASTRONG was established in 1990s as a global water pumps provider based in Italy, develops and sells pumps for house,garden, agriculture and commercial applications.

Nowadays AQUASTRONG's strategy enables it to supply best price/performance ratio pumps with the process of controlling and monitoring quality starting from R\&D, throughout manufacturing, marketing, sales, and after saler service.

As a trusted name that is highly appreciated by customers to serve their needs better than similar products available in the market, and is recognized for transparency in business relationship.

Our mission

To be recognized pump brand that offers clients a comprehensive ranges of high quality pumps of international standards and that suits the needs of customers in the world, and support these products with an after sale service according to our warranty policy.

Our values

The core values of AQUASTRONG stem from the cerdibility of its products and relations with its clients. This credibility is evident in the careful control of product's standard, reliability, warranty and development. It also embraces our commitment of transparency and honesty in dealing with all stakeholders.

CONTENTS

- PERIPHERAL PUMPS

P01-09

- CENTRIFUGAL PUMPS P10-22
- JET PUMPS
- stainless steel centrifugal pumps

P30-35

- GASOLINE/DIESEL WATER PUMPS
- POOL AND SPA PUMPS P50-51
- GARDEN PUMPS
- SUBMERSIBLE PUMPS
- stainless steel submersible sewage pumps P68-79
- SUBMERSIBLE BOREHOLE PUMPS
- SUBMERSIBLE PUMPS P104-123
- STANDARD CENTRIFUGAL PUMPS
- CIRCULATION PUMPS

PUMP

- Submersible peripheral pump
- Special anti-rust treatment for cast iron pump body

Max. fluid temperature: $+35^{\circ} \mathrm{C}$
Max. immersion depth: 5 m
Liquid PH value: $6.5-8$
Maximum sand content: 1%

- Maximum solid diameter: 0.2 mm

MOTOR

Motor with copper winding

- Insulation class: F
- Protection class: IPX8

MODEL	POWER		OUTLET	MAX.FLOW (Umin)	MAX.HEAD (m)	$\begin{aligned} & \text { MAX } \\ & \text { IMMERSION } \\ & (\mathrm{m}) \end{aligned}$
	(kW)	(HP)				
EPSm37A	0.37	0.5	${ }^{1 \prime}$	35	42	5

EKm

PUMP

-Transfer of clean water or non-aggressive liquid

- Brass impeller
- Special anti-rust treatment for pump body and
support
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4

Max. ambient temperature: $+40^{\circ} \mathrm{C}$

EQm

HYDRAULIC PERFORMANCE CURVE

PUMP

Transfer of clean water or non-aggressive liquid - Brass impeller

- Special anti-rust treatment for pump body and
support
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

EKm

PUMP

Transfer of clean water or non-aggressive liquid

- Brass impeller
- Special anti-rust treatment for pump body and
support
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor - Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

capacity Q

MODEL	POWER		INLET/OUTLET	MAX.FLOW ($/$ /min)	MAX.HEAD(m)	MAX.SUCT(m)
	(kW)	(HP)				
EKm60-1	0.37	0.5	$1^{\prime \prime \times 1}$	35	35	8
EKm70-1	0.6	0.8	$1{ }^{1 \times 1} \times 1$	45	53	8
EKm80-1	0.75	1.0	1 "x1"	50	62	8
EKm90-1	0.75	1.0	$3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$	35	90	8
EKm110-1	1.1	1.5	$1^{\prime \prime \times 1} \times$	70	85	8
EKm150-1	1.5	2.0	1 "×1"	80	90	8
EK220-1	2.2	3.0	$1^{* \prime \times 1}$	90	100	8

PUMP
Transfer of clean water or non-aggressive liquid - Brass impeller

- Special anti-rust treatment for pump body and
support
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

MODEL	POWER		Inlet/OUTLET	MAX.FLOW (L/min)	MAX.HEAD (m)	MAX.SUCT (m)
	(kW)	(HP)				
EQm60	0.37	0.5	1"x1"	30	38	8
EQm70	0.6	0.8	1 "x1"	45	53	8
EQm80	0.75	1.0	$1^{\prime \prime} \times 1$ "	50	62	8

HYDRAULIC PERFORMANCE CURVE

Capacity Q -

\square

PUMP

Transfer of clean water or non-aggressive liquiid

- Brass impeller
- Special anti-rust treatment for pump body and
support
Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +9 m

MOTOR

Copper winding
Built-in thermal protector for single phase motor

- Insulation class: F

Protection class: IPX4
Max. ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		INLET/OUTLET	MAX.FLOW ($\mathrm{L} / \mathrm{min}$)	MAX.HEAD (m)	$\underset{(\mathrm{m})}{\mathrm{MAX} \text { Puct }}$
	(kW)	(HP)				
EKSm60-1	0.37	0.5	$1^{\prime \prime \times 1}$	30	35	9
EKSm70-1	0.6	0.8	$1{ }^{1 \times 1} \times 1$	45	53	9
EKSm80-1	0.75	1.0	$1{ }^{1 \times 1} \times 1$	50	62	9
EKSm90-1	0.75	1.0	$1^{1 / 2 / 2 \times 1 / 2}$	70	65	

EKSm80-1
EKSm90-1

路

PUMP
With $2 L$ pressure tank for automatic operation

- Special anti-rust treatment
- Brass impeller

AISI 304 shaft
Max. liquid temperature: $+40^{\circ} \mathrm{C}$

- Max. suction: +9 m

MOTOR

C\&U braring

- Copper winding
- Built-in thermal protector
- Insulation class: F

Protection class: IPX4
Max. ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		InLet/OUTLET	$\underset{(\text { UImin })}{\text { MAX.FLOW }}$	MAX.HEAD (m)	MAX.SUCT (m)
	(kW)	(HP)				
EKSm130	0.125	0.17	$1^{\prime \prime \times 1}$	30	30	9
EKSm350A	0.35	0.47	$1{ }^{1 \times 1} \times 1$	40	35	9
EKSm550A	0.55	0.75	$1^{\prime \prime} \times 1^{\prime \prime}$	45	45	9
EKSm750A	0.75	1	$1{ }^{1 \prime \times 1}$	50	55	9

PUMP
Transter of clean water or non-aggressive liquid - Open impeller

- Special anti-rust treatment for pump body and support
- High fow and Medium/low head meet industrial
and agricultural demand
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding

Built-in thermal protector for single phase motor

- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		inletoutlet	MAX.FLOW (L/min)	VAX.HEAD(m)	MAX.SUCT (m)
	(kW)	(HP)				
EHSm1500	1.5	1.5	$2^{\prime \prime} \times 2^{\prime \prime}$	300	19	8
EHSm2000	1.5	2.0	$2^{\prime \prime} \times 2^{\prime \prime}$	350	23	8
EHS2000	1.5	2.0	$2^{\prime \prime} \times 2^{\prime \prime}$	350	23	8

	Part	Material	Remark
1	Pump body	Castiron	E-coating
2	Impeller	Castiron	
3	Mechanical seal	Cerami//Carbon	
4	Sealing ring	NBR	
5	Support	Castiron	E-coating
6	Bearing		
7	Rotor	Cold-rolled sheet	Welded stainless steel shaft
8	Fan cover	Iron	
9	Fan	Noryl	
10	End plate	Aluminum	
11	Outtet nozzle	NBR	
12	Cover box	ABS	
13	Capacitor		
14	Terminal		
15	Stator	Aluminum casting	Cold-rolled sheet
16	Sealing gasket	NBR	
17	Inlet connector	Castiron	

PUMP

Transfer of clean water or non-aggressive liquid

- Special anti-rust treatment for pump body and
support
Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding

Built-in thermal protector for single phase motor

- Insulation class: F

Protection class: IPX4
Max. ambient temperature: $+40^{\circ}$

MODEL	POWER		inletoutlet	$\underset{(\text { LImin) }}{\text { MAX.FLOW }}$	MAX.HEAD (m)	MAX.SUCT (m)
	(kW)	(HP)				
ECm100	0.25	0.33	$1^{\prime \prime \times 1}$	60	17.5	8
ECm130	0.37	0.5	$1{ }^{1 \times 1} \times 1$	70	23	8
ECm146	0.60	0.8	1 "×1"	80	27	8
ECm158	0.75	1.0	$1{ }^{1 \times 1} \times 1$	90	33	8
ECm170-1	1.1	1.5	$1^{1 \prime \times 1}$	120	41	8
ECm170M-1	1.1	1.5	$1^{1 / 4} 4^{* \times 10}$	140	33	8
ECm190	1.5	2.0	$1^{1 / 4 / 4 \times 10}$	140	50	8
EC220	2.2	3.0	$1^{1 / 4} 4^{*} \times 1^{\prime \prime}$	150	58	8

${ }^{15}$
16
$11 \quad 10 \quad 9$

PUMP

Transfer of clean water or non-aggressive liquid - Special anti-rust treatment for pump body and support

- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MODEL	POWER		INLET/OUTLET	MAX.FLOW (L min)	MAX.HEAD (m)	MAX.SUCT (m)
	(kW)	(HP)				
ECm25/160A	1.5	2.0	$1^{\prime} / 2^{\prime \prime} \times 1$ "	210	37	8
ECm25/160B	1.1	1.5	$1^{1 / 2} 2^{\prime} \times 1^{\prime \prime}$	180	31	8

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

	Part	Material	Remark
1	Pump body	Cast iron	E-coating
2	Impeller	Brass/Stainless steel	
3	Sealing ring	NBR	
4	Mechanical seal	Ceramic/Carbon	
5	Bracket cover	Castiron	E-coating
6	Support	Aluminum	
7	Bearing		Welded stainless steel shaft
8	Rotor	Cold-rolled sheet	
9	Fan cover	Iron	
10	Fan	Noryl	
11	End plate	Cast iron	
12	Outlet nozzle	NBR	
13	Cover box	ABS	
14	Capacitor		
15	Terminal		
16	Stator	Aluminum casting	Cold-rolled sheet

PUMP

Cast iron pump body and support under special
anti-rust treatment

- AISI 304 shaft

Max. liquid temperature: $+40^{\circ} \mathrm{C}$

- Max. suction: +8 m

MOTOR

c\&U braring

- Motor with copper winding
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

model	POWER		INLET/OUTLET	MAX.FLOW (L/min)	MAX.HEAD(m)	MAX.SUCT (m)
	(kW)	(HP)				
ECm220C	2.2	3	$2^{\prime \prime} \times 2^{\prime \prime}$	400	31	8
ECm220B	3	4	$2^{\prime \prime} \times 2^{\prime \prime}$	450	38	8
ECm220A	4	5.5	$2^{\prime \prime} \times 2^{\prime \prime}$	450	49	8
EC220AH	5.5	7.5	$2^{\prime \prime} \times 2^{\prime \prime}$	500	54	8
ECm230C	3	4	$2^{\prime \prime} \times 2^{\prime \prime}$	800	60	8
ECm230B	4	5	$2^{\prime \prime} \times 2^{\prime \prime}$	900	39	8
EC230A	5.5	7.5	$2^{\prime \prime} \times 2^{\prime \prime}$	900	46.5	8
EC250C	7.5	10	$2^{\prime \prime} \times 2^{\prime \prime}$	900	56.5	8
EC250CR	7.5	10	$4^{* *} \times 3^{\prime \prime}$	900	52.5	8

	Part	Material	Remark
1	Pump body	HT200	
2	Impeller	AISI 304 Brass	
3	Mechanical seal	Carbon/Ceramic	
4	Bracket cover	HT200	
5	Oil seal		
6	Support	HT200	
7	Bearing		
8	Rotor		Welded stainless steel shaft
9	Fan cover	PP	
10	Fan	PP	
11	Rear cover	21102	
12	Stator		Cold-rolled sheet
13	Capacitor		
14	Terminal box	ABS	

ESm

PUMP

- Transfer of clean water or non-aggressive liquid - Special anti-rust treatment for pump body and support
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max ambient temperature: $40^{\circ} \mathrm{C}$

	Part	Material	Remark
1	Pump body	Castiron	E-coating
2	Impeller	06Cr 19Ni 10	
3	Mechanical seal	Ceramic/Carbon	
4	Sealing ring	NBR	
5	Support	Castiron	E-coating
6	Bearing		
7	Rotor	Cold-rolled sheet	Welded stainless steel shaft
8	Fan cover	Iron	
9	Fan	Noryl	
10	End plate	Aluminum	
11	Outlet nozzle	NBR	
12	Cover box	ABS	
13	Capacitor		
14	Terminal		
15	Stator	Aluminum casting	Cold-rolled sheet

EGm

PUMP

- Transfer of clean water or non-aggressive liquid
- Special anti-rust treatment for pump body and
support
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		INLET/OUTLET	MAX.FLOW ($~(/ \mathrm{min}$)	MAX.HEAD (m)	MAX.SUCT (m)
	(kW)	(HP)				
EGm/1B	0.6	0.8	$1^{1} / 2^{\prime \prime} \times 1^{1 / 2} /{ }^{\prime \prime}$	200	15	8
EGm/1A	0.75	1.0	$1^{1} / 2^{\prime \prime} \times 11^{1} / 2^{\prime \prime}$	250	19	8

EHm

PUMP

- Transfer of clean water or non-aggressive liquid - Special anti-rust treatment for pump body and support
- High fow and medium/low head meet industrial and agricultural demand
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		INLET/OUTLET	MAX.FLOW (L/min)	MAX.HEAD (m)	$\begin{aligned} & \text { MAX.SUCT } \\ & (\mathrm{m}) \end{aligned}$
	(kW)	(HP)				
EHm/5C	0.6	0.8	$2^{\prime \prime} \times 2^{\prime \prime}$	400	11	8
EHm/5B	0.75	1.0	$2^{\prime \prime} \times 2^{\prime \prime}$	400	13.5	8
EHm/5A	1.1	1.5	$2^{\prime \prime} \times 2^{\prime \prime}$	450	14.5	8
EHm/5BM	1.1	1.5	$2^{\prime \prime} \times 2^{\prime \prime}$	400	18	8
EHm/5AM	1.5	2.0	$2^{\prime \prime} \times 2^{\prime \prime}$	450	22	8
EH/5BM	1.1	1.5	$2^{\prime \prime} \times 2^{\prime \prime}$	400	18	8
EH/5AM	1.5	2.0	$2^{\prime \prime} \times 2^{\prime \prime}$	450	22	8

	Part	Material	Remark
1	Pump boby	Castiron	E-coating
2	Impeller	Brass	
3	Sealing ring	NBR	
4	Mechanical seal	Ceramic/Carbon	
5	Bracket cover	Stainless steel	
6	Support	Aluminum	
7	Bearing		
8	Rotor	Cold-rolled sheet	Welded stainless steel shaft
9	Fan cover	Iron	
10	Fan	Noryl	
11	End plate	Aluminum	
12	Outlet nozzle	NBR	
13	Capacitor		
14	Cover box	ABS	
15	Wire holder assembly		
16	Stator	Aluminum casting	Cold-rolled sheet

EHm

PUMP

- Transfer of clean water or non-aggressive liquid
- Special anti-rust treatment for pump body and support
- High fow and medium/low head meet industrial
and agricultural demand
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

MODEL	POWER		InLet/OUTLET	$\underset{\text { (L/min) }}{\text { MAX.FLOW }}$	MAX.HEAD(m)	MAX.SUCT (m)
	(kW)	(HP)				
EHm/6C	1.1	1.5	$3^{\prime \prime} \times 3^{\prime \prime}$	700	12	8
EHm/6CR	1.1	1.5	$4^{* \times 4} \times$	700	12	8
EHm/6B	1.5	2.0	$3^{\prime \prime} \times 3^{\prime \prime}$	800	14.5	8
EHm/6BR	1.5	2.0	$4^{\prime \prime} \times 4^{\prime \prime}$	800	14.5	8
EHm/6A	2.2	3.0	$3^{\prime \prime} \times 3^{\prime \prime}$	1000	16.5	8
EHm/6AR	2.2	3.0	$4^{\prime \prime} \times 4^{\prime \prime}$	1000	16.5	8
EHm/7B	3.0	4.0	$3^{\prime \prime} \times 3^{\prime \prime}$	1100	19.5	8
EHm/7BR	3.0	4.0	$4^{\prime \prime} \times 4^{\prime \prime}$	1100	19.5	8
EH/6CR	2.2	3.0	$4^{\prime \prime} \times 4^{\prime \prime}$	700	12	8
EH/6A	2.2	3.0	$3^{\prime \prime} \times 3^{\prime \prime}$	1000	16.5	8
EH/6AR	2.2	3.0	$4^{\prime \prime} \times 4^{\prime \prime}$	1000	16.5	8

EHm

PUMP

- Transter of clean water or non-aggressive liquid
- Special anti-rust treatment for pump body and support
- High fow and medium/low head meet industrial
and agricultural demand
- Max. liquid temperature: $40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

	Part	Material	Remark
1	Pump body	Castiron	E-coating
2	Impeller	Brass	
3	Mechanical seal	Ceramic/Carbon	
4	Sealing ring	NBR	
5	Support	Castiron	E-coating
6	Bearing		
7	Rotor	Cold-rolled sheet	Welded stainless steel shaft
8	Fan cover	Iron	
9	Fan	Noryl	
10	End plate	Aluminum	
11	Outiet nozzle	NBR	
12	Cover box	ABS	
13	Capacitor		
14	Terminal		
15	Stator	Aluminum casting	Cold-rolled sheet

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		InLET/OUTLET	MAX.FLOW (Umin)	$\underset{(\mathrm{m})}{\text { MAX.HEAD }}$	max.suct (m)
	(kW)	(HP)				
EHm/7A	4	5.5	4 " $\times 4$ "	1600	16.5	

	Part	Material	Remark
1	Flange	HT200	
2	Pump body	HT200	E-coating
3	Impeller	нT200	
4	Mechanical seal	Ceramic/Carbon	
5	O-sealing ring	NBR	
6	Support	H200	E-coating
7	Bearing		
8	Rotor	Cold-rolled sheet	Welded stainless steel shaft
9	Fan cover	$08 F$	
10	Fan	PP-GF10	
11	End plate	H200	
12	stator	Aluminum casting	Cold-rolled sheet
13	Terminal board		
14	Terminal box	ABS	
15	Capacitor		
16	Outtet nozzle	NBR	

 ENm

PUMP

- Transfer of clean water or non-aggressive liquid
- Special anti-rust treatment for pump body and support
- High fow and medium/low head meet industrial
and agricultural demand
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		InLet/outlet	$\underset{(\mathrm{L} \text { min })}{\text { MAX.FLOW }}$	MAX.HEAD (m)	MAX.SUCT (m)
	(kW)	(HP)				
ENm/129B	1.1	1.5	$2^{\prime \prime} \times 2^{\prime \prime}$	400	18	8
ENm/129A	1.5	2.0	$2^{\prime \prime} \times 2^{\prime \prime}$	450	22	8
ENm/130B	1.5	2.0	$3^{\prime \prime} \times 3^{\prime \prime}$	800	14.5	8
ENm/130A	2.2	3.0	$3^{\prime \prime} \times 3^{\prime \prime}$	1000	16.5	8
EN/130A	2.2	3.0	$3^{\prime \prime} \times 3^{\prime \prime}$	1000	16.5	8

PUMP

- Transfer of clean water or non-aggressive liquid
- Special anti-rust treatment for pump body and
support
- AISI 304 shaft
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding

- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		Inletoutlet	$\underset{(L / \mathrm{min})}{\operatorname{MAXXLOW}}$	MAX.HEAD (m)	$\underset{(\mathrm{m})}{\text { MAX. }}$
	(kW)	(HP)				
2ECm25/140M	1.1	1.5	$1^{1 / 2} 2^{\prime \prime} \times 1{ }^{\prime \prime}$	160	47	8
2ECm160/160	1.5	2.0	$1^{1 / 4} 4^{1} \times 1{ }^{1 /}$	125	66	8
2ECm25/160B	1.5	2.0	$1^{1 / 2} 2^{\prime \times 1} \times 1$	185	57.5	8
2ECm25/160A	2.2	3.0	$1^{1 / 2} 2^{\prime} \times 1{ }^{11}$	180	65	8
2ECm32/200C	3.0	4.0	$1^{1 / 2 / 4}{ }^{4} \times 1^{1 / 4} /{ }^{\prime \prime}$	265	65	8
2EC32/200B	4.0	5.5	$1^{1 / 2} /^{\prime \prime} \times 11^{1 / 4}$	315	82	8

	Part	Material	Remark
1	Pump body	Castiron	E-coating
2	Impeller	Brass	
3	Eliminator	Cast iron	
4	Impeller	Brass	
5	Mechanical seal	Ceramic/Carbon	
6	Sealing ring	NBR	
7	Support	Castiron	
8	Bearing		
9	Rotor	Cold-rolled sheet	Welded stainless steel shaft
10	Stator	Aluminum casting	Cold-rolled sheet
11	End plate	Cast iron/Aluminum	
12	Fan	Noryl	
13	Fan cover	Iron	
14	Outiet nozzle	NBR	
15	Capacitor		
16	Cover box	ABS	
17	Terminal		

PUMP

Transfer of clean water or non-aggressive liquid
Special anti-rust treatment for pump body and
support
AISI 304 shaft

- Max. liquid temperature: $+40^{\circ} \mathrm{C}$

Max. suction: +8 m

MODEL	POWER		inletoutlet	MAX.FLOW ($4 / \mathrm{min}$)	MAX.HEAD(m)	$\underset{(\mathrm{m})}{\text { MAX.SUCT }}$
	(kW)	(HP)				
3ECm80	0.45	0.6	1 "x1"	75	36	8
4ECm80	0.6	0.8	$1{ }^{\prime \prime} \times 1{ }^{\prime \prime}$	75	36	8

MOTOR

- Copper winding

Built-in thermal protector for single phase motor
Insulation class: F

- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

	Part	Material	Remark
1	Pump body	Castiron	E-coating
2	Diffuser1	Noryl	
3	Impeller	Plastic	
4	Diffuser2	Noryl	
5	Diffuser bracket	Noryl	
6	Mechanical seal	Ceramic/Carbon	
7	Bracket cover	Stainless steel	
8	Support	Cast iron	E-coating
9	Bearing		
10	Rotor	Cold-rolled sheet	Welded stainless steel shaft
11	Stator	Aluminum casting	Cold-rolled sheet
12	End plate	Aluminum	
13	Fan	Noryl	
14	Fan cover	Iron	
15	Capacitor		
16	Cover box	ABS	
17	Terminal		

ECm

PUMP

- Transfer of clean water or non-aggressive liquid
- Special anti-rust treatment for pump body and
support
- AISI 304 shaft
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +8 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		inletoutlet	MAX.FLOW (L/min)	MAX.HEAD (m)	MAX.SUCT (m)
	(kW)	(HP)				
3ECm100S	0.6	0.8	$1^{\prime \prime \times 1}$	80	35	8
$4 \mathrm{ECm100S}$	0.75	1.0	1 "×1"	90	45	8
$5 \mathrm{ECm100S}$	0.9	1.2	$1^{\prime \prime} \times 1^{\prime \prime}$	90	55	8

ECSm

PUMP

Transfer of clean water or non-aggressive liquid
Special anti-rust treatment for pump body and
AISI 304 shaft
Self-priming design
Max. liquid temperature: $+40^{\circ} \mathrm{C}$
Max. suction: +8 m

MOTOR

Copper winding
Built-in thermal protector for single phase motor

- Insulation class: F

Protection class: IPX

- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		INLET/OUTLET	MAX.FLOW (4 min)	MAX.HEAD(m)	MAX.SUCT (m)
	(kW)	(HP)				
3ECSm100S	0.6	0.8	1"x1	80	35	8
4ECSm100S	0.75	1.0	$1{ }^{1 \times 1} \times 1$	90	45	8
5ECSm100S	0.9	1.2	$1{ }^{1 \times}$			

	Part	Material	Remark
1	Pump Plug	Noryl	
2	Pusher	Noryl	
3	Nozzle	Noryl	
4	Pump body	Castiron	E-coating
5	Barrel	Stainless steel	
6	Pump Cover	Noryl	
7	Impeller	Noryl	
8	Discharge cover	Noryl	
9	Diffuser	Noryl	
10	Support	Castiron	E-coating
11	Fan cover	Iron	
12	Fan	Noryl	
13	End plate	Aluminum	
14	Cover box	ABS	
15	Capacitor		
16	Terminal		
17	Stator	Aluminum casting	Cold-rolled sheet
18	Rotor	Cold-rolled sheet	Welded stainless stel shatt
19	Bearing		
20	Mechanical seal	Ceramic/Carbon	

PUMP

- Transfer of clean water or non-aggressive liquid
- Special anti-rust treatment for pump body and support
- Stainless steel impeller
- AISI 304 shaft
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +9 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		inletoutlet	MAX.FLOW (L/min)	MAX.HEAD (m)	MAX.SUCT (m)
	(kW)	(HP)				
EJm41C	0.3	0.4	$1^{\prime \prime} \times 1$ "	45	29	9
EJm61C	0.45	0.6	$1^{\prime \prime \times 1}$	45	38	9
EJm81C	0.6	0.8	$1{ }^{\prime \prime} \times 1$ "	45	42	9
EJm101C	0.75	1.0	$1{ }^{1 \times 1} \times 1$	50	46	9
EJm121C	0.9	1.2	$1^{\prime \prime} \times 1{ }^{\prime \prime}$	55	48	9

	Part	Material	Remark
1	Pump boby	Stainless steel	
2	Diffuser	PPO	
3	Impeller	Brass/PPO/Stainless steel	
4	Mechanical seal	Ceramic/Carbon	
5	Bracket cover	Stainless steel	
6	Support	Aluminum	
7	Bearing		
8	Rotor		Welded stainless steel shaft
9	Stator	Aluminum casting	
10	End plate	Aluminum	
11	Fan	PP	
12	Fan cover	Iron	
13	Capacitor		
14	Cover box	ABS	
15	Terminal		

PUMP

Transfer of clean water or non-aggressive liquid
Special anti-rust treatment for pump body and

PPO impeller
AISI 304 shaft

- Max. liquid temperature: $+40^{\circ} \mathrm{C}$

Max. suction: +9 m

MODEL	POWER		INLET/OUTLET	$\underset{(L \text { min) }}{\text { MAX.FLOW }}$	MAX.HEAD(m)	MAX.SUCT (m)
	(kW)	(HP)				
EJm40LB	0.3	0.4	$1^{\prime \prime \times 1}$	40	29	9
EJm60LB	0.45	0.6	$1{ }^{1 \times 10}$	40	38	9
EJm80LB	0.6	0.8	$1{ }^{1 \times 1} \times 1$	45	42	9
EJm100LB	0.75	1.0	1 " ${ }^{1}$	50	46	

MOTOR

Copper winding
Built-in thermal protector for single phase motor
Insulation class: F
Protection class: IPX
Max. ambient temperature: $+40^{\circ} \mathrm{C}$

PUMP

Transfer of clean water or non-aggressive liquid

- Special anti-rust treatment for pump body and suppor
- Stainless steel impeller
- AISI 304 shaft
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +9 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		INLET/OUTLET	MAX.FLOW (L/min)	MAX.HEAD (m)	MAX.SUCT (m)
	(kW)	(HP)				
EJWm/1C-E	0.37	0.5	1 "x1"	35	35	9
EJWm/1B-E	0.5	0.7	$1^{\prime \prime} \times 1{ }^{\prime \prime}$	35	38	9

	Part	Material	Remark
1	Pump body	Castiron	E-coating
2	Ventrur tube	PPO	
3	Discharge cover	PPO	
4	Impeller	PPO/Stainless steel/Brass	
5	Mechanical seal	Ceramic/Carbon	
6	Bracket cover	Stainless steel	
7	Support	Aluminum	
8	Rotor		Welded stainless steel shaft
9	Bearing		
10	Stator	Aluminum casting	
11	End plate	Aluminum	
12	Fan	PP	
13	Fan cover	Iron	
14	Capacitor		
15	Cover box	ABS	
16	Terminal		

EJWm

PUMP

-Transfer of clean water or non-aggressive liquid

- Special anti-rust treatment for pump body and
support
Stainless steel impeller
- AISI 304 shaft
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +9 m

MOTOR

- Copper winding

Built-in thermal protector for single phase motor

- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		INLET/OUTLET	MAX.FLOW (\quad Imin)	MAX.HEAD (m)	max.suct (m)
	(kW)	(HP)				
EJWm/10H	0.75	1.0	$1^{\prime \prime \times 1}$	50	56	9
EJWm/15H	1.1	1.5	$1^{\prime \prime} \times 1$ "	50	66	9
EJWm/10M	0.7	1.0	1 "×1	70	44	9
EJWm/15M	1.1	1.5	1 " ${ }^{1}$	70	52	

PUMP

- Transfer of clean water or non-aggressive liquid
- Special anti-rust treatment for pump body and support
- Stainless steel impeller
- AISI 304 shaft
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. suction: +9 m

MOTOR

- Copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

MODEL	POWER		INLET/OUTLET	MAX.FLOW (4 min)	$\underset{(\mathrm{m})}{\text { MAX.HEAD }}$	MAX.suct (m)
	(kW)	(HP)				
EJWm/3CH	1.1	1.5	$1^{1 / 4} 4^{\prime \times 1}{ }^{1 /}$	60	58	9
EJWm/3CM	1.1	1.5	$1{ }^{1 / 4} 4 \times \times 1{ }^{\prime \prime}$	100	48	9
EJWm/3CL	1.1	1.5	$1^{1 / 4} 4 \times 1 \times$	120	42	9
EJWm/3BH	1.5	2.0	$1{ }^{1 / 4} 4 \times \times 1{ }^{1 /}$	70	66	9
EJWm/3BM	1.5	2.0	$11^{1 / 4 \times 10}$	100	59	9
EJWm/3BL	1.5	2.0	$1{ }^{1 / 4} 4 \times 1$ "	120	51	9

	Part	Material	Remark
1	Pump body	Castiron	E-coating
2	Nozzle	pPO	
3	Internal channel	PPO	
4	Discharge cover	PPO	
5	Impeller	Brass/Stainless steel	
6	Mechanical seal	Ceramic/Carbon	
7	Bracket cover	Castiron	E-coating
8	Support	Aluminum casting	
9	Bearing		
10	Rotor		Welded stainless steel shaft
11	Stator	Aluminum casting	
12	End plate	Aluminum	
13	Fan	PP	
14	Fan cover	Iron	
15	Capacitor		
16	Cover box	ABS	
17	Terminal		

EDPm255A/EDPm370A

EDPm505A

MODEL	POWER		InLet/outlet	$\underset{\substack{\text { MAX.FLOW } \\ \text { (Lmin) }}}{ }$	MAX.HEAD (m)	MAX.SUCT (m)
	(kW)	(HP)				
EDPm255A	0.55	0.75	$1^{1 / 4 / 4 \times 1 \times 1}{ }^{1 / 4}$	75	60	25
EDPm370A	0.75	1.0	$1^{1 / 4} 4^{4 \times 1 \times 1 \times 11^{\prime \prime}}$	85	80	25
EDPm505A	1.1	1.5	$1^{1 / 4} 4^{4 \times 1 \times 1 \times 11^{\prime \prime}}$	100	100	35

MOTOR

- Copper winding

Built-in thermal protector

- Insulation class: F
- Protection class: IPX4
- Max ambient temperature: $+40^{\circ} \mathrm{C}$

	Part	Material	Remark
1	Pump body	Cast	E-coating
2	Discharge		
3	Impeller	Pover	PPO
4	Brass		
5	Mechanical seal	Ceramic/Carbon	
6	Bracket	Cast	
7	Bearing	E-coating	
7	Rotor		Welded stainless steel shaft
8	Stator	Aluminum casting	
9	End plate	Aluminum	
10	Fan	PP	
11	Fan cover	Iron	
12	Capacitor	ABS	
13	Cover box	ABS	
14	Terminal		

EDPm255A/1/EDPm370A/1

EDPm505A/1

PUMP

- Transfer of clean water or non-aggressive liquid
- Special anti-rust treatment for pump body and support
- AISI 304 shaft
- Max. liquid temperature: $+40^{\circ}$
- Head up to 100 m
- Suction up to 50 m

MODEL	POWER		InLET/OUTLET	MAX.FLOW (L/min)	MAX.HEAD (m)	MAX.SUCT (m)
	(kW)	(HP)				
EDPm255A/1	0.55	0.75	$1^{1 / 4} 4^{\prime \prime} \times 1^{\prime \prime} \times 1{ }^{\prime \prime}$	35	57	25
EDPm370A/1	0.75	1.0	$1^{1 / 4} 4^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$	35	66	35
EDPm505A/1	1.1	1.5	$1^{1 / 4} 4^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$	35	85	45

MOTOR

- Copper winding

Built-in thermal protector

- Insulation class: F
- Protection class: IPX
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

	Part	Material	Remark
1	Pump body	Castiron	E-coating
2	Discharge cover	Noryl	
3	Impeller	Brass	
4	Mechanical seal	Ceramic/Carbon	
5	Bracket cover	Stainless steel	
6	Support	Aluminum	
7	Rotor	Cold-rolled sheet	Welded stainless steel shaft
8	Bearing		
9	Stator	Aluminum casting	Cold-rolled sheet
10	End plate	Aluminum	
11	Fan	Noryl	
12	Fan cover	Iron	
13	Capacitor		
14	Cover box	ABS	
15	Terminal		

Dimension

Model	Pors		$\mathrm{L}_{(\mathrm{m})}^{\mathrm{L}}$	$\begin{gathered} \underset{(m m)}{w} \\ \left(y_{1}\right. \end{gathered}$	$\underset{(m \mathrm{~m})}{\mathrm{H}}$	$\begin{gathered} L_{(}^{L} \\ (m) \end{gathered}$	${ }_{(m \mathrm{~m})}^{L_{2}}$		$\begin{gathered} \mathbf{c}_{\mathbf{\prime}}^{(m)} \\ (\mathrm{m}) \end{gathered}$
Ems700.37	$11 / 4$	$1{ }^{\prime \prime}$	332	210	224	119	55	149	110
EMS700. 55	$11 / 4$	$1{ }^{1}$	332	210	224	119	55	149	110
EMS7000.75	$11 / 4^{*}$	$1{ }^{1}$	381	210	234	119	55	149	110
EMS 12010.55	$11 / 4$	$1{ }^{1}$	332	210	224	119	55	149	110
EMS120/1. 1	$11 /{ }^{*}$	$1{ }^{\circ}$	381	210	234	119	55	149	110

Hydraulic Performance Curve

Package Information

Model	$\mathrm{c}_{(\mathrm{Kgs})}$	(mm)	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \text { Quantity } \\ \text { (PCSS/20 TEU) } \end{gathered}$
EMS70/0.37	10	380	240	270	1200
EMS700. 55	11	380	240	270	1200
EMS700.75	14	410	240	270	1104
EMS12010.55	11	380	240	270	1200
EMS120/1.1	15	410	240	270	1104

Dimension

Model	Pors		$(m m)$	$\begin{gathered} \substack{(m m) \\ (m)} \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{aligned} & \left.L_{1}^{L_{1}}\right) \\ & (m) \end{aligned}$	$\begin{aligned} & \mathrm{L}_{2} \\ & (\mathrm{~mm}) \end{aligned}$	$\underset{\substack{\boldsymbol{c} \\(\mathrm{mm}) \\ \hline}}{ }$	$\underset{\substack{\mathbf{H}_{1} \\(\mathrm{~m}) \\ \hline}}{ }$
EMS2100.75	$11 / z^{\prime \prime}$	$11 /{ }^{*}$	392	210	234	129	55	149	110
Ems2101.1	$11 / z^{*}$	$11 / 4$	392	210	234	129	55	149	110
EMS2101. 5	$11 / 2^{\prime \prime}$	\%/4	440	210	250	129	55	149	110
EMS21012.2	$11 / z^{*}$	$11 / 4$	440	210	250	129	55	149	110
EMS370/1.1	$2 \cdot$	$11 / 4$	392	210	234	129	55	149	110
EMS3701. 5	$2 \cdot$	$11 / 4$	440	210	250	129	55	149	110
EMS37012.2	2^{*}	$11 / 4$	440	210	250	129	55	149	110

Hydraulic Performance Curve

Materials Table

No.	Part	Material
1	Botom supoort	Stioel
2	Pump basy	Astil 304
3	Dimser	${ }^{\text {Ast }} 304$
4	Impolor	${ }^{\text {AsI }} 304$
5	O.ing	Ner
6	Alproot pate	ALS1304
7	Supoor	21.102
8	Mechancal seal	stuoncatoon
9	Ball caeaing	
10	Roour	
11	Statar	
12	fan	pp
13	Reartousm	2102
14	Fanover	pp
15	Temmina tox	ABS

Package Information

Model		(mm)	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \text { Quantity } \\ \text { (PCS/20 TEU) } \end{gathered}$
EMS2100.75	14	410	240	270	1104
Ems2101.1	15	410	240	270	104
Ems210/1. 5	18	465	240	270	968
EmS21012.2	20	465	240	270	968
EmS370/1.1	15	410	240	270	1104
EmS370/1. 5	18	465	240	270	968
EMS37012.2	20	465	240	270	968

Technical Data

MODEL		POWER		$\mathrm{O}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	1.2	2.4	3.6	4.8	6	12	18	24	33	42	48	57	66
Single Phase	Three Phase	kW	HP	$\mathrm{Q}(1 / \mathrm{min})$	20	40	60	80	100	200	300	400	550	700	800	950	1100
EBK50D	EBK50	0.37	0.5	$\underset{(\mathrm{m})}{\mathrm{H}}$	11.6	10.5	9.7	8.7	7.5	.	.	-	.	.	.	-	.
EBK100D	евк100	0.75	1		-	-	-	-	8	7	5	.	-	.	-	.	-
EBK120D	EBK120	0.9	1.2		-	-	-	-	11	10	9	-	-	.	.	.	-
EBK150D	EBK150	1.1	1.5		.	.	-	-	9.5	8.8	7.8	6.7	5	-	.	-	-
EBK200D	евк200	1.5	2		-	-	.	-	12.7	12	11.2	10	8.3	6.5	-	-	-
EBK300D	евкзоо	2.2	3		15	14	13.5	12.7	11.2	9.8	8.9	7.5	-
-	EBK400	3	4		.	.	-	.	17.5	16.8	16	15.2	14	12.5	11.5	9.7	7.5

Dimension

Model	Pors		$\begin{gathered} \mathrm{Lm}) \end{gathered}$	$\begin{gathered} L_{1}^{L} \\ (\mathrm{~mm}) \end{gathered}$	${ }_{(\mathrm{mm})}^{\mathrm{L}_{2}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \mathbf{H}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{\left(\mathrm{m}_{2}\right)}{\substack{2 \\ \hline}}$	$\underset{(\mathrm{mm})}{\underset{\sim}{w}}$	$\begin{gathered} \mathbf{w}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} s_{1} \\ (\mathrm{~mm}) \end{gathered}$
EBK50(D)	$11 / /^{*}$	$1 \cdot$	280	123	50	180	90	106	170	105	9
EBK100(D)	$11 / 2^{*}$	$11 / 2^{*}$	332	160	76	212	100	118	170	120	9
EBK120(D)	$11 / z^{*}$	$1{ }^{1} / 2^{*}$	332	160	76	212	100	118	170	120	9
EBK150(D)	$2{ }^{\prime \prime}$	2^{*}	400	184	85	235	112	133	195	140	9
EBK200(D)	$2{ }^{\prime \prime}$	$2 \cdot$	400	184	85	235	112	133	195	140	9
EвK300(D)	$21 / z^{*}$	$2 \times$	450	184	85	252	117	133	195	140	9
EBK400	$21 / z^{*}$	2^{*}	450	184	85	252	117	133	195	140	9

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Pump oody	${ }^{\text {Alis }} 304$
2	Impeler	Als 304
3	Mechncal seal	sticcaroon
4	Bracel cover	Alsi 304
5	support	21.102
6	Bearng	
7	Rotor	
8	stator	
9	Temminal box	PCiABS
10	Rear cover	2102
11	Fan	PP.GF30
12	Fan cover	08F

Package Information

Model	$\underset{(\mathrm{Kgs})}{\mathrm{G}_{2}}$	(mm)	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \text { Quantity } \\ \text { (PCS/20 } \end{gathered}$
EBK50(0)	6.5	310	190	215	2130
EBK100(D)	9.6	360	200	235	1566
EBK120(D)	10.7	360	200	235	1566
EBK150(D)	14	420	235	265	1032
EBK200(D)	15.7	420	235	265	1032
EBK300(D)	20.7	475	230	275	864
EBK400	21.8	475	230	275	864

Hydraulic Performance Curve

Materials Table

Package Information

Model	$\mathbf{G W}$ $(\mathbf{K g s})$	\mathbf{L} $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	\mathbf{H} $(\mathbf{m m})$	Quantity $(\mathbf{P C S (1 2 0} \mathbf{T E U})$
EGP10	8.1	350	290	325	896
EGP15	8.3	355	290	370	768

EGP

Application

- To transfer clean water with liquid temperature between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$
- Application in water supply and drainage for factories, mines, municipal facilities as well as field irrigation, ect

Features

- 4-stroke gasoline engine power performance, structural optimization and upgrading
- Ignition more convenient, more complete combustion, low energy
consumption, more environmentally friendly
- Strengthened pump body ensures more durable and relicalbe service
- Better sealing effect by using special mechanical seal
- Impeller designed with high efficient hydraulic system

Pump

- Anti-rust cast iron impeller and diffuser
- Max.suction: $5 \mathrm{~m} / 120 \mathrm{~s}$
- Inlet/outlet: 38 mm

Engine

- Single cylinder,4-stroke,Air-cooled
- Max.power: 3 HP
- Displacement: 87 cc
- Rated speed: 3600 rpm

Identification Codes
EGP 15-A

Gasoline Water Pump

Technical Data

MODEL	POWER	$Q\left(m^{\prime} / \mathrm{h}\right)$	0	2	4	6	8	10	12	14	16	18
	HP	Q (llmin)	0	33.3	66.7	100	33.3	166.7	200	233.3	266.7	300
EGP15-A	3	$\mathrm{H}(\mathrm{m})$	26	25	24.8	23	22	20	17	15	12	7.2

Dimension

Hydraulic Performance Curves

Capacity Q -

Materials Table

No.	Part	Material
1	Frame	Steel
2	Engine	
3	Pump cover	Aluminum
4	O-ing	NBR
5	Mechanical seal	Carbon/Ceramic
6	Impeller	нт200
7	Difluser	HT200
8	O-ing	NBR
9	Pump body	Aluminum
10	Seal	NBR
11	Plug	PP
12	Outlet	Aluminum
13	Non-retum valve	NBR
14	Inlet	Aluminum

Package Information

Model	$\mathbf{G W}$ $(\mathbf{K g s})$	\mathbf{L} $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	\mathbf{H} $(\mathbf{m m})$	Quantity $($ PCCS/20 TEU $)$
EGP15-A	15.5	464	378	400	340

EGP

Application

- To transfer clean water with liquid temperature between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ - Application in water supply and drainage for factories, mines, municipal facilities as well as field irrigation, ect

Features

- Strengthened pump body ensures more durable and reliable service
- Better sealing effect by using special mechanical seal
- 5-direction outlet for convenient use
- Improved starter handle for easier starting
- 20% increased loading quantity thanks to very compact design
- Less gasoline consumption
as default, BS/Honda engine is optional

Pump

- Anti-rust cast iron impeller and diffuser
- Anti-rust cast iron impeller and diffuser
- Max. suction: $5 \mathrm{~m} / 120 \mathrm{~s}$
- Inletloutlet: $38 \mathrm{~mm} / 50 \mathrm{~mm} / 80 \mathrm{~mm}$

Engine

- Single cylinder, 4-stroke, Air-cooled
- Max. power: $3 \mathrm{HP} / 5.5 \mathrm{HP} / 6.5 \mathrm{HP}$
- Displacement: $87 \mathrm{cc} / 163 \mathrm{cc} / 196 \mathrm{cc}$
- Rated speed: 3600 rpm

Identification Codes

Technical Data

model	POWER	$Q\left(m^{\prime} / \mathrm{l}\right)$	0	5	10	15	20	25	30	35	40	45	50	55	60
	HP	Q (l/min)	0	${ }^{83} 3$	16.7	250	333.3	416.7	500	583.3	66.7	750	833.3	916.7	1000
EGP20-A	5.5	$\underset{(\mathrm{m})}{\mathrm{H}}$	32	29.1	25.2	21.5	16.6	11.3	6.5	-	-	.	-	.	-
EGP30-A	6.5		32	30.4	29.3	27.1	25.5	23	20.5	18	16.2	13.5	11	9	6

Dimension

Model	DN1	DN2	\mathbf{L} $(\mathbf{m} \mathbf{m})$	\mathbf{w} (\mathbf{m})	\mathbf{H} $(\mathbf{m m})$	$\mathbf{H} 1$ $(\mathbf{m m})$
EGP20-A	2^{-}	2^{-}	462	397.5	405.5	181
EGP30-A	3^{-}	3^{-}	462	397.5	405.5	189

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Fame	Steol
2	Gasoline engine	
3	Pump cover	ADC12
4	O-ing	NBR
5	Mectranical seal	Catronceramic
6	Impeler	castion
7	Dituseor	Castion
8	O-ing	NeR
$\stackrel{ }{ }$	Pump body	Auminum
10	Gasket	NER
11	Outer	Alumium
12	Filling fug	PAG
13	Non-Eteum vave	NBR
14	thet	Auninum

Package Information

Model	$\mathbf{G W}$ $(\mathbf{K g s})$	$\mathbf{L} \mathbf{(m)})$	\mathbf{W} $(\mathbf{m m})$	\mathbf{H} (\mathbf{m})	Quantity $($ PCCS/20 TEU $)$
EGP20-A	21.5	470	412	432	340
EGP30-A	23	470	412	432	340

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Frame	Steel
2	Engine	
3	Bracket	Aluminum
4	Mechanical seal	Carbon/Ceramic
5	O-ing	NBR
6	Impeller	Aluminum
7	Seal ing	NBR
8	Difuser	нт200
9	Seal ing	NBR
10	Pipe blanking cap	PP
11	Seal ling	NBR
12	Outhet	Aluminum
13	Gasket	NBR
14	Pump body	Aluminum
15	Non-retur valve	NBR
16	Inlet	Aluminum
17	Filling plug	PA6

Package Information

Model	$\underset{(\mathrm{Kgs})}{(\mathrm{Kg}}$	(mm)	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCS } / 20^{\circ} \text { TEU) } \end{aligned}$
EGP20-H	22.22	470	412	432	340
EGP20-2H	2224	470	412	432	340

EGP

Application

- To transfer clean water with liquid temperature between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ - Application in water supply and drainage for factories, mines, municipal facilities as well as field irrigation, ect

Features

- All new design with ergonomic feature
- Reliable 4 -stroke gasoline engine with low fuel consumption and high quality crankshaft
- Portable, durable and compact pump frame
- Durable sealing system with special mechanical seal
- Optional outlet selection

Pump

- Anti-rust cast iron impeller and diffuser
- Max.suction: 5 m
- Inletoutlet: $3^{\prime \prime}$
- Max. diameter of particle: 22 mm

Engine

- Single cylinder, 4 -stroke, Air-cooled
- Max.power: 6.5 HP
- Rated speed: 3600 rp

Identification Codes
EGP 30 - W
\qquad Sewage InletOOutlet Diameter (3")

Technical Data

MODEL	POWER	$Q\left(m^{\prime} / \mathrm{h}\right)$	0	5	10	15	20	25	30	35	40	45	50	55	60
	HP	Q (llmin)	0	83.4	16.7	250.1	333.4	416.8	500.1	583.5	666.8	750.2	833.5	916.9	1000.2
EGP30-w	6.5	$\mathrm{H}(\mathrm{m})$	25.9	25.3	24.	22.8	21.2	18.8	16.1	13.2	9.6	6.1	2.1		

Dimension

Model	DN1	DN2	(mm)	$\underset{(m m)}{\mathbf{w}}$	${ }_{(m m)}^{\text {H }}$	$\begin{gathered} \mathbf{H}_{(m \mathrm{~m})} \end{gathered}$	${ }_{(m 2)}^{\text {(m2) }}$
EGP30-w	$3^{\prime \prime}$	3°	590	447	430	195	

Hydraulic Performance Curves

Materials Table

Package Information

Model	$\underset{(\mathrm{Kgs})}{(\mathrm{Gw}}$	$\left(\mathrm{m}_{\mathrm{L}}^{\mathrm{L}}\right)$	$\underset{(\mathrm{mm})}{\mathrm{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}_{1}}$	Quantity (PCS/20'TEU)
EGP30-w	33.6	605	450	459	188

Application

- To transfer clean water with liquid temperature between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ - Application in water supply and drainage for factories, mines, municipal facilities as well as field irrigation, ect

Features

- All new design with ergonomic feature
- High lift series with LEO high efficient hydraulic system
- Reliable 4 -stroke gasoline engine with low fuel consumption and high quality crankshaft
- Portable, durable and compact pump frame
- Durable sealing system with special mechanical seal
- Optional outlet selection

Pump

- Anti-rust cast iron impeller and diffuse
- Max.suction: 5 m
- Inletoutlet: 2"/3"

Engine

- Single cylinder,4-stroke,Air-cooled
- Max.power: 3.8 HP
- Displacement: 219 cc
- Rated speed: 3600 rpm

Identification Codes EDP 20-A

Technical Data

MODEL	POWER	Q(m'm)	0	5	10	15	20	25	30	35	40	45	50	55
	HP	Q (1/min)	0	83.4	16.7	250.1	333.4	416.8	500.1	583.5	66.8	750.2	833.5	. 9
EDP20-A	3.8	$\underset{(m)}{\text { H }}$	31	27	23	18.4	15	10	5.9	-	-	.	-	-
EDP30-A	3.8		30	27	26.5	24.1	21.4	19.3	16.7	15.8	13.5	11	8	4.8

Dimension

Model	DN1	DN1	$\begin{gathered} \mathrm{L} \\ (\mathrm{~m}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H})}$	$\begin{gathered} \mathbf{H}\left(\begin{array}{c} \mathrm{m} \end{array}\right) \end{gathered}$	$\underset{(m m)}{\text { (m2 }}$
EDP20-A	$2{ }^{*}$	$2{ }^{\text {² }}$	470	427	536	225	335
EDP30-A	${ }^{*}$	${ }^{\text {² }}$	470	427	536	240	390

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Frame	Steel
2	Engine	
3	Pump cover	Aluminum
4	O-ing	NBR
5	Mechanical seal	Carbon/Ceramic
6	Impeller	нт200
7	Difluser	HT200
8	O-ing	NBR
9	Pump body	Aluminum
10	Seal	NBR
11	Outlet	Aluminum
12	Plug	ABS
13	Non-retum valve	NBR
14	Inlet	Aluminum

Package Information

Model		(mm)	$\underset{(m m)}{w}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \text { Quantity } \\ \text { (PCS } \left.120^{\circ} \mathrm{TEU}\right) \end{gathered}$
EDP20-A	35.1	485	435	550	244
EDP30-A	36.2	485	435	550	244

Application

- To transfer clean water with liquid temperature between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ - Application in water supply and drainage for factories, mines, municipal facilities as well as field irrigation, ect

Features

- Strengthened pump body ensures more durable and reliable service - Better sealing effect by using special mechanical seal
- 5 -direction outlet for convenient use
- 20% increased loading quantity thanks to very compact construction
design
Less gasoline consumption

Pump

- Anti-rust cast iron impeller and diffuser
- Max.suction: 5 m
- Inlet/outlet: $2^{2 /} / 2^{\prime \prime}+2 \times 1.5^{\circ}$
- Electric starting

Engine

- Single cylinder,4-stroke,Air-cooled
- Max.power: 8.4 HP
- Displacement: 418 cc
- Rated speed: 3600 rpm

EDP
Identification Codes
EDP 20 e-H

Technical Data

MODEL	POWER	$Q\left(\mathrm{~m}^{\prime} \mathrm{m}\right)$	0	5	10	15	20	25	30	35	40	45	50	55
	HP	Q (llmin)	0	83.4	16.7	250.1	333.4	416.8	500.1	583.5	666.8	750.2	833.5	916.9
EDP20e-H	8.4	$\underset{(\mathrm{m})}{\mathrm{H}}$	52	48.8	42	39	30	10	5	.	-	.	.	.
EDP20e-2H	8.4		74	71	68.5	52	20	-	-	-	-	,	-	

Dimension

Model	ON1	ON2	2xOn3	$\left.\mathbf{m}_{(m)}^{\mathrm{L}}\right)$	$\underset{(m m)}{w}$	$\underset{(\mathrm{mm})}{\mathrm{H})}$	$\underset{\binom{\text { (1 }}{(m \mathrm{~m})}}{ }$	${ }_{\text {(mm) }}^{\text {H2 }}$
EDP20	$2 "$	$2 \cdot$	$1.5{ }^{\text {P }}$	600	530	620	375	415
EDP20-2H	$2{ }^{*}$	${ }^{2}$	$1.5{ }^{-}$	600	530	620	375	415

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Frame	Steel
2	Engine	
3	Bracket	Aluminum
4	Mechanical seal	CarbonCeramic
5	O-ing	NBR
6	Impeller	Aluminum
7	Seal ing	NBR
8	Difuser	нт200
9	Seal ling	NBR
10	Pipe blanking cap	PP
11	Seal ing	NBR
12	Outlet	Aluminum
13	Gasket	NBR
14	Pump body	Aluminum
15	Non-retum valve	NBR
16	Inlet	Aluminum
17	Filling plug	PA6

Package Information

Model	$\underset{(\mathrm{Kgs})}{(\mathrm{Gw}}$	(mm)	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCS/20'TEU) } \end{aligned}$
EDP20eH	62.4	630	570	680	108
EDP20-2H	63.8	630	570	680	108

APPLICATIONS

The XKP series of pool pumps is mainly used for water circulation \& filtration systems, such as

- Hot springs
- Small and medium-sized swimming pools
- Water treatment systems
- Landscape fountains
- Light industries

PUMP

- Plastic pump body
- AISI 304 shaft
- Integrated pre-filter
- Quiet operation
- Max. liquid temperature: $+35^{\circ} \mathrm{C}$

MOTOR

- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX5

MODEL	RATED POWER (W)	INLET/OUTLET (mm)	MAX.FLOW $(\mathrm{m} / \mathrm{h})$	MAX.HEAD (m)	MAX.SUCT (m)
EKP200-2	200	$40 / 40$	6	6	3.5
EKP250-2	250	$40 / 40$	7	7	3.5
EKP300-2	300	$40 / 40$	7	8	3.5
EKP350-2	350	$40 / 40$	8	9	3.5
EKP450-2	450	$40 / 40$	9.5	10	3.5

-

APPLICATIONS

The XKP series of pool pumps is mainly used for water circulation \& filtration systems, such as:

- Hot springs
- Small and medium-sized swimming pools
- Water treatment systems
- Landscape fountains
- Light industries

PUMP

- Plastic pump body
- AISI 304 shafl
- Integrated pre-filter
- Quiet operation

Quiet operatio

MOTOR

- Built-in thermal protector
- Insulation class: F
- Protection class: IPX5

MODEL	RATED POWER (W)	INLET/OUTLET $(\mathbf{m m})$	MAX.FLOW $(\mathbf{m} / \mathrm{h})$	MAX.HEAD (m)	MAX.SUCT (m)
EKP554	600	$63 / 63$	18	10	3.5
EKP804	800	$63 / 63$	19	11	3.5
EKP904	900	$63 / 63$	21	13	3.5
EKP1104	1100	$63 / 63$	22	15	3.5
EKP1604	1600	$63 / 63$	28	17	3.5
EKP2204	2200	63163	31	18	3.5

EKS

APPLICATIONS

Can be used to transfer clean or slightly dirty water or other liquids similar to water in physical and chemical properties
Suitable to be immersed in water for lifting water from the well or the pool, and draining water from the basement

PUMP

- Engineering plastic pump body
- Float switch ensures automatic cut-in and cut-out Max. liquid temperature: $+35^{\circ} \mathrm{C}$
Max. immersion depth: 7 m
- Max. diameter of particle: 5 mm

HYDRAULIC PERFORMANCE CURVE

MOTOR

Motor with aluminum winding

- Built-in thermal protector
- Insulation class: F
- Protection class: IPX8

MODEL	POWER		$\underset{(\mathrm{mm})}{\text { OUTLET }}$	$\underset{\substack{\text { MAX.FLOW } \\ \text { (Umin) }}}{\text { Man }}$	MAX.HEAD (m)	$\begin{gathered} \text { MAX } \\ \text { IMMERSION } \\ (\mathrm{m}) \\ \text { IM } \end{gathered}$
	(W)	(HP)				
EKS-250P	250	0.3	32	75	6	7
EKS-400P	400	0.5	32	125	7	7
EKS-500P	500	0.7	32	150	8	7
EKS-750P	750	1.0	40	175	9	7

 EKS

APPLICATIONS

- Can be used to transfer clean or dirty water or other liquids similar to water in physical and chemical properties
- Suitable to be immersed in water for lifting water from the well or the pool, and draining water from the basement

PUMP

Engineering plastic pump body
Float switch ensures automatic cut-in and cut-out
Max. liquid temperature: $+35^{\circ} \mathrm{C}$

- Max. diameter of particle: 35 mm

HYDRAULIC PERFORMANCE CURVE

MOTOR

- Motor with aluminum winding
- Built-in thermal protector
- Insulation class: F
- Protection class: IPX8

MODEL	POWER		OUTLET (mm)	MAX.FLOW (L/min)	MAX.HEAD (m)	$\underset{\substack{\text { MAX } \\ \text { IMMESION } \\(\mathrm{m})}}{ }$
	(W)	(HP)				
EKS-400PW	400	0.5	32	125	5	7
EKS-550PW	550	0.7	32	175	7	7
EKS-750PW	750	1.0	40	225	8	7
EKS-1000	1000	1.3	40	250	11	

APPLICATIONS

- Mainly used for use in traditional wells, water
deposits and collection tanks.
Suitable for small scale irrigation systems

PUMP

- Stainless steel pump body
- High lift with multistage-impeller design
- Max. liquid temperature: $+35^{\circ} \mathrm{C}$
- Max. immersion depth: 5 m
- Max. particle diameter: 1 mm

HYDRAULIC PERFORMANCE CURVE

MOTOR

- Both copper and aluminum winding available
- Built-in thermal protector
- Insulation class: F
- Protection class: IPX8

MODEL	RATED POWER (\mathbf{W})	OUTLET (mm)	MAX.FLOW $(\mathrm{m} / \mathrm{h})$	MAX.HEAD (m)	MAX IMMRSION (m)
EKS-900S	900	25	6	36	3
EKS-1100S	1100	25	6	48	4

EKS

APPLICATIONS

- Can be used to transfer clean or slightly dirty water or other liquids similar to water in physical and chemical properties
- Suitable to be immersed in water for lifting water from the well or the pool, and draining water from the basemen

PUMP

- Stainless steel pump body
- Float switch ensures automatic cut-in and cut-out
- Max. liquid temperature: $735^{\circ} \mathrm{C}$
- Max. immersion depth: 7 m
- Max. diameter of particle: 5 mm

HYDRAULIC PERFORMANCE CURVE

MOTOR

- Motor with aluminum winding
- Built-in thermal protector
- Insulation class: F
- Protection class: IPX8

MODEL	POWER		$\begin{gathered} \text { OUTLET } \\ (\mathrm{mm}) \end{gathered}$	MAX.FLOW (L/min)	MAX.HEAD (m)	$\begin{array}{\|c} \text { MAX. } \\ \text { IMMERSION } \\ \text { (m) } \end{array}$
	(W)	(HP)				
EKS-250S	250	0.3	32	67	6	7
EKS-400S	400	0.5	32	133	7	7
EKS-500S	500	0.7	32	133	8	7
EKS-750S	750	1.0	32	167	9	7
EKS-1000S	1000	1.3	32	200	12	7

EKS

HYDRAULIC PERFORMANCE CURVE

Capacity Q -

EKJ

HYDRAULIC PERFORMANCE CURVE

PUMP

- Unique ergonomic design
- Max.fluid temperature: $+35^{\circ}$
- Max.suction: +7 m

APPLICATIONS

- Can be used to transfer clean water or other liquids similar to water in physical and chemical properties
Suitable for water supply and drainage in garden irrigation, greenhouses, fish breeding and poultry raising. The pump also can be used for domestic automatic water supply places, such as lifting water from a deep well, pressure boosting of running water, etc.

MOTOR

- Built-in thermal protector
- Aluminum winding
- Insulation class: F

EKJ

HYDRAULIC PERFORMANCE CURVE

Capacity Q -

EKJ

HYDRAULIC PERFORMANCE CURVE

Capacity Q -

APPLICATIONS

- Can be used to transfer clean water or other liquids similar to water in physical and chemical properties
- Suitable for water supply and drainage in garden irrigation, greenhouses, fish breeding and poultry raising. The pump also can be used for domestic automatic water supply places, such as lifting water from a deep well, pressure boosting of running water, etc.

MOTOR

- Built-in thermal protector
- Aluminum winding

Insulation class: F
Protection class: IPX4

MODEL	POWER		$\underset{(\mathrm{mm})}{\text { OUTET }}$	MAX.FLOW (Umin)	$\underset{(\mathrm{m})}{\operatorname{MAX.HEAD}}$	$\begin{array}{c\|} \text { MAX } \\ \text { IMMERSION } \\ (\mathrm{m}) \\ \hline \text { IMA } \end{array}$
	(w)	(HP)				
EKJ-600S	600	0.8	1" 117	50	35	7
EKJ-800S	800	1.1	1"14"	60	40	7
EKJ-900S	900	1.2	1"/1"	60	43	8
EKJ-1100S	1100	1.5	1"/1"	77	46	8
EKJ-1300S	1300	1.75	1"/1"	83	48	8

PUMP

Unique ergonomic design

- Max.fluid temperature: $+35^{\circ} \mathrm{C}$
- Max.suction: $+7 / 8 \mathrm{~m}$

Can ere to transfer clean water or other liquids similar to
Can be used to transfer clean water orties
water in physical and chemical properties

- water in physical and chemical properties
- Suitable for water supply and drainage in garden irigation,
greenhouses, fish breeding and poultry raising. The pump also can
be used for domestic automatic water supply places, such as lifting water from a deep well, pressure boosting of running water, etc.

MOTOR

- Built-in thermal protector
- Aluminum winding
- Insulation class: F
- Protection class: IPX4

MODEL	POWER		$\begin{aligned} & \text { OUTLET } \\ & (\mathrm{mm}) \end{aligned}$	MAX.FLOW (Umin)	MAX.HEAD (m)	$\begin{gathered} \text { MAX } \\ \text { IMMERSION } \\ (\mathrm{m}) \end{gathered}$
	(W)	(HP)				
EKJ-600l	600	0.8	1"/1"	50	35	7
EKJ-8001	800	1.1	1"/1"	60	40	7
EKJ-900l	900	1.2	1"/1"	60	43	8
EKJ-11001	1100	1.5	1"/1"	77	46	8
EKJ-13001	1300	1.75	1"/1"	83	48	8

EKJ

APPLICATIONS

- Can be used to transfer clean water or other liquids similar to water in physical and chemical properties. - Fully automatic water supply in house and garden

MOTOR

- Built-in thermal protector for single phase motor
- Insulation class: F
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

HYDRAULIC PERFORMANCE CURVE

PUMP

- Unique ergonomic design
- Max. fulid temperature: $+35^{\circ} \mathrm{C}$
- Max. suction: +8 m

MODEL	POWER		inLET/OUTLET (mm)	$\underset{(亡 \mathrm{~min})}{\mathrm{MAX} \text {).FLOW }}$	MAX.HEAD(m)	MAX.SUCT(m)
	(W)	(HP)				
EKJ-6011	600	0.8	1"/1"	60	30	8
EKJ-8011	800	1.1	1"/1"	60	37	8
EKJ-9011	900	1.2	1"/1"	60	43	8
EKJ-11011	1100	1.5	1"/1"	75	47	8
EKJ-13011	1300	1.75	1"/1"	80	53	8

EKJ

APPLICATIONS

- Can be used to transfer clean water or other liquids similar to water in physical and chemical properties
Suitable for water supply and drainage in garden irrigation, greenhouses, fish breeding and poultry raising. The pump also can be used for domestic automatic water supply places, such as lifting water from a deep well, pressure boosting of running water, etc.

MOTOR

- Built-in thermal protector
- Aluminum winding
- Insulation class: F
- Protection class: IPX4

HYDRAULIC PERFORMANCE CURVE

PUMP

Unique ergonomic design

- Max.fluid temperature: $+35^{\circ} \mathrm{C}$
- Max.suction: $+7 / 8 \mathrm{~m}$

MODEL	POWER		$\underset{(\mathrm{mm})}{\text { OUTET }}$	MAX.FLOW (L/min)	MAX.HEAD (m)	
	(W)	(HP)				
EKJ-600PA	600	0.8	1" 11 "	50	35	7
EKJ-800PA	800	1.1	1"/1"	60	40	7
EKJ-900PA	900	1.2	$1{ }^{1 / 1}$	60	43	8
EKJ-1100PA	1100	1.5	1"/1"	77	46	8
EKJ-1300PA	1300	1.75	1" $11^{\prime \prime}$	83	48	8

APPLICATIONS

- Can be used to transfer clean water or other liquids similar to water in physical and chemical properties
- Suitable for water supply and drainage in garden irrigation, greenhouses, fish breeding and poultry raising. The pump also can be used for domestic automatic water supply places, such as lifting water from a deep well, pressure boosting of running water, etc.

MOTOR

Built-in thermal protector

- Aluminum winding
- Insulation class: F
- Protection class: IPX4 ${ }^{\text {- }}$. ${ }^{\circ}$

MODEL	POWER		$\begin{aligned} & \text { OUTLET } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \text { MAX.FLOW } \\ \text { (Umin) } \end{gathered}$	MAX.HEAD(m)	$\begin{aligned} & \text { MAX. } \\ & \underset{\substack{\text { (m) })}}{\text { IMMERSION }} \end{aligned}$
	(W)	(HP)				
EKJ-6001A	600	0.8	1"/1"	50	35	7
EKJ-8001A	800	1.1	1"/1"	60	40	7
EKJ-9001A	900	1.2	1"/1"	60	43	8
EKJ-11001A	1100	1.5	1" 11 "	77	46	8
EKJ-13001A	1300	1.75	1"/1"	83	48	8

HYDRAULIC PERFORMANCE CURVE

Capacity Q -

PUMP

- Unique ergonomic design
- Max.fluid temperature: $+35^{\circ} \mathrm{C}$
- Max.suction: $+7 / 8$ m

HYDRAULIC PERFORMANCE CURVE

PUMP

- Unique ergonomic design
- Max.fluid temperature: $+35^{\circ}$
- Can be used to transfer clean water or other liquids similar to

Can be used to transfer clean wal properties
water in physical and chemical prest

- Suitable for water supply and drainage in garden irrigation, greenhouses, fish breeding and poultry raising. The pump also can water from a deep well, pressure boosting of running water, etc.

MOTOR

- Built-in thermal protector
- Aluminum winding
- Insulation class: F
- Protection class: IPX4

MODEL	POWER		OUTLET (mm)	MAX.FLOW (L/min)	$\underset{(\mathrm{m})}{\mathrm{MAX.HEAD}}$	
	(W)	(HP)				
EKJ-600SA	600	0.8	1"/1"	50	35	7
EKJ-800SA	800	1.1	1"/1"	60	40	7
EKJ-900SA	900	1.2	1"/1"	60	43	8
EKJ-1100SA	1100	1.5	1"/1"	77	46	8
EKJ-1300SA	1300	1.75	1"/1"	83	48	8

	Part
,	Pressure switch
2	Pressure gauge
3	Tank cover
4	Drain plug
5	Tank
6	Flexille hose
7	Seal washer
8	Elbow coonector
9	Pump body
10	Enjector
11	Difluser
12	Impeller
13	Mechanical seal
14	O-ing

EKJ

APPLICATIONS

- Can be used to transfer clean water or other liquids similar to water in physical and chemical properties - Fully automatic water supply in house and garden

MOTOR

- Built-in thermal protector for single phase motor
- Insulation class: F
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Capacity Q -

PUMP

- Unique ergonomic design
- Max. fulid temperature: $+35^{\circ} \mathrm{C}$
- Max. suction: +8 m

MODEL	POWER		$\begin{gathered} \text { INLET/(mmT) } \end{gathered}$	$\underset{(L / \mathrm{min})}{\mathrm{MAX.FLOW}}$	$\underset{(\mathrm{m})}{\operatorname{MAX} . H E A D}$	MAX.SUCT (m)
	(W)	(HP)				
EKJ-6011A	600	0.8	1"/1"	60	30	8
EKJ-8011A	800	1.1	1"/1"	60	37	8
EKJ-9011A	900	1.2	1"/1"	60	43	8
EKJ-11011A	1100	1.5	1"/1"	75	47	8
EKJ-13011A	1300	1.75	1"/1"	80	53	8

Control Box

- The device is specially designed for automatic water drainage in pump stations, elevator shafts, sewage pits, etc

Features

- Liquid level control
- Excellent anti-interference performance
- The primary pump and standby pumps can be set arbitrarily

In case the primary pump is failed or water output is less than input, the standby pump(s) start to run automatically
Display of Power and Operating status

- Manual and automatic operation mode for selection
- Protection of earth leakage, overcurrent, overvoltage overheating and phase loss
- Audible and visual alarm

Operating Conditions

- Ambient temperature: $5 \sim 40^{\circ} \mathrm{C}$
- Humidity: $\leq 90 \%$
- Operating voltage: $380 \mathrm{~V} \pm 10 \%$
- Ambient environment: Freedom from corrosive gases and/or conductive dust.

Instructions

- DOL (Direct On Line): High starting current. Applicable for pumps with power up to 15 kW .
- Autotransformer Starter: Small starting current. Applicable for pumps with power more than 15 kW .
- Soft Starter: Smooth starting current with small influence on the grid. Applicable for pumps with power more than 15 kW .
Identification Codes

Controlled Quantity	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Control Mode	For One Pump	For Three Pumps	For Four Pumps

QDX

Application

- Small electrical irrigation and drainage equipments
- Small electrical irrigation and drainage equipments
- Particularly applied in urban well water pumping, field irigation and Prainage,garden irigation and household water supply, as well as drainage of industrial accumulated water, water supply and drainage for construction, livestock breeding, etc.

Motor

- Copper winding
- Built-in thermal protector
- Stainless steel welded shaft
- Insulation class: B
- Protection class: IP68

HYDRAULIC PERFORMANCE CURVE

capalya

Pump

- Cast iron pump body under special anti-rust treatment - Max. immersion depth: 5 m
- Liquid pH value: $6.5-8$

MODEL	POWER		MAX.FLOW (LImin)	MAX.HEAD (m)	MMAX (kW) MA) (m)
	0.37	0.5	120	16	5
ODX3-18-0.55A	0.55	0.75	200	20	5
ODX10-10-0.55A	0.55	0.75	275	16	5
ODX15-7-0.55A	0.55	0.75	400	9	5
ODX1.5-32-0.75A	0.75	1.0	175	33	5
ODX6-18-0.75A	0.75	1.0	275	20	5
ODX10-16-0.75A	0.75	1.0	275	20	5

	Part
1	Hande
2	Cable
3	Top cover
4	Protector
5	Capacitor
6	O-ing
7	Upper cover
8	Beaing
9	Rotor
10	Stator
11	Oil injection screw
12	Mechanical seal
13	O-ring
14	Cover of ofic cyinder

QDX

Application

-Small electrical irrigation and drainage equipments

- Particularly applied in urban well water pumping, field irrigation and

Particularly applied in urban well water pumping, field irrigation and
drainage,garden irrigation and household water supply, as well as drainage of industrial accumulated water, water supply and drainage for construction, livestock breeding, etc.

Motor

- Copper winding
- Builti-in thermal protector
- Stainless steel welded shaft
- Protection class: IP68

HYDRAULIC PERFORMANCE CURVE

Capacity Q

Pump

- Cast iron pump body under special anti-rust treatment - Max. immersion depth: 5 m - Max liquid temperature: +

Application

Wastewater drainage in factories, construction sites and commercial facilities

- Drainage system in municipal sewage treatment plants
- Drainage station in residential quarters
- Municipal projects
- Methane pools and field irrigation in countryside

Motor

- Copper winding
- Built-in thermal protector
- Stainless steel welded
- Protection class: IP68

HYDRAULIC PERFORMANCE CURVE

Pump

- Max. immersion depth: 5 m
- Max. liquid temperature: $+40^{\circ}$
- Liquid kinematic viscosity: $7 \times 10^{-7} \sim 23 \times 10^{-8} \mathrm{~m}^{2} / \mathrm{s}$
- Max. liquid density: $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

MODEL	OWER		$\begin{gathered} \text { OUTLET } \\ \text { DIAMETER } \\ (\mathrm{mm}) \end{gathered}$	$\underset{\substack{\text { VOLTAGE } \\(V / H z)}}{ }$	$\underset{(\text { Uimin })}{M A X . F L O W}$	MAX.HEAD (m)	$\begin{gathered} \text { OFAX.DIA } \\ \text { OFARTICE } \\ (\mathrm{mm}) \end{gathered}$(mm)
	(kW)	(HP)					
ESP8-710	0.18	0.25	40,32,25	220150	133	7	15
ESP9-7.510.25I	0.25	0.33	40,32,25	220150	150	7.5	15

ESP

Application

Wastewater drainage in factories, construction sites and commercial
Drainage system in municipal sewage treatment plants
Drainage station in residential quarters
Municipal projects
Methane pools and field irrigation in countryside

Motor

Copper winding
Built-in thermal protector
Stainless steel welded sha

- Insulation class: B
- Protection class: IP68

	Part
1	Bott
2	Stretching waster
3	Washer Boter
${ }_{5}^{4}$	Boit
6	Hasher
7	Nut
8	Protector
9	Cable presser
10	Washer
11	Screw
12	Bott
13	O-ring
14	Screw
15	Flange
16	Cable
17	Cable protector
18	Capactior cover
19	Capacitor
${ }_{2}$	O-fing
21	Rubber washer
22	Screw
${ }^{23}$	Streetching waster
-24	Washer Cable holder
26	Motor cover
27	emmal protectar
${ }^{28}$	O-Fing

HYDRAULIC PERFORMANCE CURVE

Pump

- Max. immersion depth: 5 m
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
-Liquid pH value: $4-10$
- Liquid kinematic viscosity: $7 \times 10^{-7} \sim 23 \times 10^{8} \mathrm{~m}^{2} / \mathrm{s}$
- Max. liquid density: $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

Application

Wastewater drainage in factories, construction sites and commercial
Drainage system in municipal sewage treatment plants

- Drainage station in residential quarters

Municipal projects
Methane pools and field irrigation in countrrside

Motor

Copper windin

- Built-in thermal protector
- Stainless steel welded shaft

Insulation class: B
Protection class: IP68

HYDRAULIC PERFORMANCE CURVE

- Max. immersion depth: 5 m
- Liquid pH value: $4-10$
- Liquid kinematic viscosity: $7 \times 10^{-7} \sim 23 \times 10^{-8} \mathrm{~m}^{2} / \mathrm{s}$
- Max. liquid density: $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ - Max. liquid density: $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

MODEL	POWER		$\underset{(\mathrm{mm})}{\text { OUTLET }}$	$\begin{aligned} & \text { VOLTAGE } \\ & (\mathrm{V} / \mathrm{Hz}) \end{aligned}$	MAX.FLOW (L min)	MAX.HEAD (m)	OFPARTIACLE (mm)
	(kW)	(HP)					
ESP20-9/1.11	1.1	1.5	50	220150	333	9	

ESP

HYDRAULIC PERFORMANCE CURVE

Capacity Q.

Application

aster factories, construction sites and commercia facilities
Drainage system in municipal sewage treatment plants
Drainage station in residential quarters
Municipal projects
Methane pools and field irrigation in countryside

Motor

Copper winding

- Built-in thermal protector
- Stainless steel welded shaft

Insulation class: B

- Protection class: IP68

Pump

Max. immersion depth: 5 m

- Max. liquid temperature: $+40^{\circ}$
- Liquid pH value: 4 - 10
- Liquid kinematic viscosity: $7 \times 10^{-7} \sim 23 \times 10^{-8} \mathrm{~m}^{2} / \mathrm{s}$ - Max. liquid density. $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

MODEL	POWER		$\underset{(\mathrm{mm})}{\text { OUTET }}$	VOLTAGE (V/Hz)	MAX.FLOW (L/min)	MAX.HEAD (m)	
	(kW)	(HP)					
ESP16.2-22/1.51	1.5	2.0	40	220150	270	22	10
ESP42-17/2.21	2.2	3.0	75	220150	700	17	20

Part		Part	
1	Bott	30	O-ing
2	Washer	31	Screw
3	Hande	32	Stretching washer
4	Both	${ }^{33}$	Connection part
5	Nut	${ }^{34}$	Mechanical seal
6	Protector	35	O-ring
7	Screw	36	Oil chamber cover
8	Washer	37	
9	Cable presser	38	Oil seal
10	Screw	39	Lmpepller
11	Cable	40	Washer
12	Flange	41	Nut
13	Cable protector	42	Bott
14	Bolt	43	Washer
15	O-ing	44	Connector
16	Stretching washer	45	O-ring
17	Capacitor cover	46	Connector nut
18	O-ring	47	Rubber washer
19	Capacitor	48	Pump body
20	O-ing	49	Rubber washe
21	Motor cover	50	Pump body
22	O-ing	51	Bott
23	Themal protector	52	Filler mesh
${ }^{24}$	Stator	53	Screw
25	Wave washer	54	Float switch
26	Ball beaing	55	Cable holder
27	Rotor	56	Screw
28	Key	57	Stretching washer
29	Ball bearing	58	Washer

ESP

Application

-Wastewaer drainage in factories, construction sites and commercia
facilities

- Drainage system in municipal sewage treatment plants
- Drainage station in residential quarters
- Municipal projects

Methane pools and field irrigation in countryside

Motor

- Copper winding
- Built-in thermal protector
- Stainless steel welded shaft
- Insulation class: B
- Protection class: IP68

	Part
1	Bott
2	Stretching washer
3	Washer
4	Handle
5	Screw
6	Cable
7	Flange
8	Cable protector
9	Capacitor cover
10	Screw
11	Cable presser
12	Protector
13	O-ring
14	Capactior
15	Rubber washer
16	Screw
17	Stretching washer
18	Washer
19	Press plate
20	Cable holder
21	Screw
22	Stretching washer
${ }^{23}$	Washer
24	Nut

ESP

HYDRAULIC PERFORMANCE CURVE

Capacity Q -

Application

Wastewater drainage in factories, construction sites and commercial facilities

- Drainage system in municipal sewage treatment plants
- Drainage station in residential quarters
- Municipal projects

Methane pools and field irrigation in countryside

Motor

- Copper winding
- Copper winding
- Stainless steel welded shaft - Insulation class: B
- Protection class: IP68
(as)

MODEL	POWER		$\underset{(\mathrm{mm})}{\text { OUTLET }}$	$\begin{aligned} & \text { VOLTAGE } \\ & (\mathrm{V} / \mathrm{Hz}) \end{aligned}$	$\underset{(L / \mathrm{min})}{\mathrm{MAX.FLOW}}$	MAX.HEAD(m)	$\underset{\substack{\text { OF PAR.DTA. } \\(\mathrm{mm})}}{\text { MALLE }}$
	(kW)	(HP)					
ESP18-12/0.75S	0.75	1.0	50	220150	300	12	25
ESP16.2-22/1.5S	1.5	2.0	40	220150	270	22	10

- Max. immersion depth: 5 m
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Liquid pH value: 4 - 10
- Liquid kinematic viscosity: $7 \times 10^{-7} \sim 23 \times 10^{-8} \mathrm{~m}^{2} / \mathrm{s}$
- Max. liquid density: $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

Application

astewar drainage in factories, construction sites and commercia
facilities

- Drainage system in municipal sewage treatment plants
- Drainage station in residential quarters
- Municipal projects
- Methane pools and field irrigation in countryside

Motor

- Copper winding
- Built-in thermal protector
- Insulation class: B
- Protection class: IP68

Pump

Max. immersion depth: 5 m

- Max. liquid temperature: $+40^{\circ}$
- Liquid pH value: 4 - 10
- Liquid kinematic viscosity: $7 \times 10^{-7} \sim 23 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ - Max. liquid density: $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

	Part		Part
1	Bott	26	Upper cover
2	Streetching washer		Themmal protector
3	Washer	28	O-ing
4	Bott	29	Stator
5	Washer	${ }^{3}$	Wave washer
6	Hande	31	Ball beaing
7	Nut	32	Rotor
8	Protector	33	Key
9	Cable presser	34	Ball beaing
10	Washer	35	Lower cover
11	Screw	36	Mechanical seal
12	Bolt	37	Pump body
13	O-fing	${ }^{38}$	Oil seal
14	screw	39	Impeller
15	Flange	40	Shredding ring
16	Cable	41	Washer
17	Cable protector	42	Screw
18	Capacitor cover	43	Radial cutter
19	Capacitor	44	Washer
20	O-ring	45	Screw
21	Rubber washer	46	Float switch
22	Screw	47	O-ring
23	Stretching washer	48	Connection nut
${ }_{25}^{24}$	Washer Cable holder	49	Connector

Application

facilities

age in factories, construction sites and commercial
Drainage system in municipal sewage treatment plants

- Drainage station in residential quarters

Municipal projects
Methane pools and field irrigation in countryside

Motor

- Copper winding
- Built-in thermal protector
- Stainless steel welded shaft
- Insulation class: B

Application

-Small electrical irrigation and drainage equipments

- Particularly applied in urban well water pumping, field irrigation and drainage,garden irrigation and household water supply, as well as drainage, of industrial accumulated water, water supply and drainage for
construction, livestock breeding, etc.

Pump

- Copper winding
- Built-in thermal protector
- Stainless steel welded shaft

Insulation class: B
Protection class: IP68

Motor

- Stainless steel pump body
- Max. immersion depth: 5 m
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Max. liquid density: $1.03 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

MODEL	POWER		OUTLET (mm)	VOLTAGE $($ VIHz)	MAX.FLOW $(\mathrm{L}$ min) $)$	MAX.HEAD (m)
	(kW)	(HPP)				
EOS7.2-8.5/0.25S	0.25	0.33	$40,32,25$	220150	120	8.5
EOS22.8-12/0.75S	0.75	1.0	50	$220 / 50$	380	12

HYDRAULIC PERFORMANCE CURVE

Application

- Small electrical irrigation and drainage equipments

Particularly applied in urban well water pumping, field irrigation and drainage,garden irrigation and household water supply, as well as drainage of industrial accumulated water, water supply and drainage for construction, livestock breeding, etc.

Pump

- Copper winding
- Built-in thermal protector
- Stainless steel welded shaft
- Insulation class: B
- Protection class: IP68

Motor - Max. immersion depth: 5 m - Max. liquid temperature: $+40^{\circ} \mathrm{C}$	model	POWER		OUTLET (mm)	$\begin{gathered} \text { VOLTAGE } \\ (\mathrm{V} / \mathrm{Hz}) \end{gathered}$	MAX.FLOW (L/min)	MAX.HEAD (m)
		(kW)	(HP)				
	ESS4.5-27/2-0.551	0.55	0.75	25	$220 / 50$	75	27

- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Liquid pH value: $6.5-8$

Page 76

HYDRAULIC PERFORMANCE CURVE

Pump

- Copper winding
- Built-in thermal protector
- Stainless steel welded shaft
- Insulation class: B
- Protection class: IP68

Small electrical irrigation and drainage equipments
Particularly applied in urban well water pumping, field irrigation and drainage,garden irrigation and household water supply, as well as construction, livestock breeding, etc.

HYDRAULIC PERFORMANCE CURVE

Pump

- Copper winding

Built-in thermal protector

- Stainless steel welded shaft

Insulation class: B

- Protection class: IP68

MODEL	POWER		OUTLET (mm)	VOLTAGE (V/Hz)	MAX.FLOW (L/min)	MAX.HEAD (m)
	(kW)	(HP)				
EOS39-8/0.751	0.75	1.0	75	220/50	650	8
EOS15-20/1.11	1.1	1.5	40,32,25	220150	250	20
EOS13-34/1.51	1.5	2.0	40,32,25	220150	216	34

	Part
26	Thermal protector
27	O-ring
28	Stator
29	Wave washer
30	Ball bearing
31	Rotor
32	Ball bearing
33	Lower cover
34	Oil seal
35	Connector
36	O-ring
37	Pump body
38	Mechanical seal
39	Impeller
40	Nut
41	O-fing
42	Pump body
43	Washer
44	Screw
45	Filler mesh
46	Washer
47	Screw
48 49	

Applications

- Drainage of wastewater from the attenuation tank, purifying tank and
sewage tank in water treatment plant
- Drainage of waste water containing fibrous additives from leather factory and food processing factory.
- Sewage management, accumulated water, septic tank, stock farm.
- Pumping sewage form hotels, restaurants, schools and public buildings

Features

- High efficient and anti-clogging Enclosed Channel impeller design
- Flexible installations with hoses, pipes or quick-coupling systems
- Flow switch included for single phase pump with motor power $\leqslant 1.1 \mathrm{~kW}$

Working Conditions

- Liquid temperature: $0-40^{\circ} \mathrm{C}$
- Max immersion depth: 5 m

Motor

- Frequency/Pole number: $50 \mathrm{~Hz} / 2$
- Insulation class: F
- Protection class: IPX

Bearing: Ball typ
Mechanical seal: Double-end mechanical seals
Identification Codes
50 EDS E m 8-16-1.1

Technical Data

Model		Power		Discharge mm (inch)	Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$)	Rated Head (m)	$\begin{gathered} \text { Solid Passage } \\ (\mathrm{mm}) \end{gathered}$
Single Phase	Three Phase	kW	HP				
50EDSEm8-16-1.1	50EDSE8-16-1.1	1.1	1.5	50 (2")	8	16	15
50EDSEm8-20-1.5	50EDSE8-20-1.5	1.5	2	50 (2)	8	20	15
50EDSEm15-20-2.2	50EDSE15-20-2.2	2.2	3	50 (2)	15	20	25
-	50EDSE15-25-3	3	4	50 (2)	15	26	25

Dimension

Model	L1	L2	L3	14	н	н1	D	D1	D2	m
50EDSE8-16-1.1	223	191	96	135		88	50	110	14	16
50EDSEm8-16-1.1										
50EDSE8-20-1.5					586					
50EDSEm8-20-1.5					627					
50EDSE15-20-2.2	270	223	113	163	570	75	50	110	14	16
50EDSEm15-20-2.2					611					
50EDSE15-25-3					559					

Hydraulic Performance Curves

Package Information

Model	$\mathbf{G W}$ $(\mathbf{K g s})$	\mathbf{L} (\mathbf{m})	\mathbf{W} $(\mathbf{m m})$	\mathbf{H} $(\mathbf{m m})$	Quantity (PCSS(20'teU)
50EDSE8-16-1.1	39.3	750	290	368	372
50EDSEm8-16-1.1	42.5	750	290	368	372
50EDSE8-20-1.5	50.5	848	358	311	294
50EDSEm8-20-1.5	53	848	358	311	294
50EDSE15-20-2.2	56	848	358	311	294
50EDSEm15-20-2.2	57	848	358	311	294
50EDSE15-25-3	62	848	358	311	294

Applications

- Drainage of wastewater from the attenuation tank, purifying tank and
sewage tank in water treatment plant
- Drainage of waste water containing fibrous additives from leather
factory and food processing factory.
- Sewage management, accumulated water, septic tank, stock farm
- Pumping sewage form hotels, restaurants, schools and public buildings

Features

- High efficient and anti-clogging Enclosed Channel impeller design
- Flexible installations with hoses, pipes or quick-coupling systems
- Flow switch included for single phase pump with motor power $\leqslant 1.1 \mathrm{~kW}$

Working Conditions

- Liquid temperature: $0-40^{\circ} \mathrm{C}$
- Max immersion depth: 5 m

Motor

- Frequency/Pole number: $50 \mathrm{~Hz} / 2$
- Insulation class: F
- Protection class: IPX
- Mechanical seal: Double-end mechanical seals

Identification Codes
65 EDS Em 15-10-1.1

Model		Power		Discharge mm (inch)	Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$)	Rated Head (m)	Solid Passage (mm)
Single Phase	Three Phase	kW	HP				
65EDSEm15-10-1.1	65EDSE15-10-1.1	1.1	1.5	65 (2.5 ${ }^{\text {" }}$)	15	10	25
65EDSEm 15-15-1.5	65EDSE15-15-1.5	1.5	2	65 (2.5")	15	15	25
-	65EDSE25-17-2.2	2.2	3	65 (2.5")	25	17	25
-	65EDSE25-22-3	3	4	65 (2.5")	25	22	25
-	65EDSE25-27-4	4	5.5	65 (2.5")	25	28	25

Dimension

Model	L1	L2	L3	14	H	H1	D	D1	D2	m
65EDSE15-10-1.1	291	226	117	178	557	85	65	130	14	16
65EDSEm 15-10-1.1					557					
65EDSE15-15-1.5					581					
65EDSEm15-15-1.5					622					
65EDSE25-17-2.2					581					
65EDSE25-22-3					610					
65EDSE25-27-4										

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Handle	Z6304
2	Upper cover	HT200
3	Upper bearing seat	нт200
4	Motor body	нт200
5	Oil chamber	нт200
6	Pump cover	нт200
7	Pump body	нт200
8	Impeler	HT200
9	Oil seal	
10	Mechanical seal	Hemamsiccitan
11	Beaing	
12	Rotor	
13	Stator	

Package Information

Model	$\mathbf{G} \mathbf{W}$ $(\mathbf{K g s})$	\mathbf{L} $(\mathbf{m m})$	\mathbf{w} $(\mathbf{m m})$	\mathbf{H} $(\mathbf{m m})$	Quantity $($ PCS/20TEU
65EDSE15-10-1.1	46	750	290	368	372
65EDSEm15-10-1.1	48	750	290	368	372
65EDSE15-15-1.5	57	848	290	368	372
65EDSEm15-15-1.5	60	848	290	368	372
65EDSE25-17-2.2	61	848	358	311	294
65EDSE25-22-3	67	848	358	311	294
65EDSE25-27-4	68	848	358	311	294

Applications

- Drainage of wastewater from the attenuation tank, purifying tank and
- Dewage tank in water treatment plant
- Drainage of waste water containing fibrous additives from leather

Sactorye mana

- Sewage management, accumulated water, septic tank, stock farm.
- Pumping sewage form hotels, restaurants, schools and public buildings

Features

- High efficient and anti-clogging Enclosed Channel impeller design
- Hlexible installations with hoses, pipes or quick-coupling systems

Working Conditions

- Liquid temperature: $0-40^{\circ} \mathrm{C}$
- Max immersion depth: 5 m

Motor

- Frequency/Pole number: $50 \mathrm{~Hz} / 2$
- Insulation class: F
- Protection class: IPX
- Mechanical seal: Double-end mechanical seals

Identification Codes
80 EDS E 40-9-2.2

Technical Data

Model	Power		Discharge mm (inch)	Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$)	Rated Head (m)	Solid Passage (mm)
	kW	HP				
80EDSE40-9-2.2	2.2	3	80 (3")	40	9	30
80EDSE40-13-3	3	4	80 (3")	40	13	30
80EDSE40-18-4	4	5.5	80 (3)	40	18	30

Dimension

Model	L1	L2	L3	L4	H	H1	D	D1	D2	M
80EDSE40-9-2.2	266	224	113	160	594	86	80	150	18	18
80EDSE40-13-3	266	224	113	160	620	86	80	150	18	18
80EDSE40-18-4	266	224	113	160	620	86	80	150	18	18

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Hande	26304
2	Upper cover	нт200
3	Uper beaing seat	нт200
4	Molor body	нт200
5	Oilchamber	нт200
6	Pump cover	HT200
7	Pump body	нт200
8	Impeler	HT200
9	Oil seal	
10	Mechanical seal	Lumar siccram
11	Beang	
12	Rotor	
13	Stator	

Package Information

Model	$\mathbf{G W}$ $(\mathbf{K g s})$	\mathbf{L} $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	\mathbf{H} $(\mathbf{m m})$	Quantity (PCS/20 ${ }^{(T E U)}$
80EDSE40-9-2.2	70	848	358	311	294
80EDSE40-13-3	68.5	848	358	311	294
80EDSE40-18-4	62	848	358	311	294

Hose coupling as standard.
Flange elbow is available on request.)

Applications

- Drainage of wastewater from the attenuation tank, purifying tank and sewage tank in water treatment plant
- Drainage of waste water containing fibrous additives from leather

Sewage management, accumulated water, septic tank, stock farm.

- Pumping sewage form hotels, restaurants, schools and public buildings

Features

- Semi-open Vortex Impeller design, suitable for transfer of liquid containing impurities and long fiber substance
- Flexible installations with hoses, pipes or quick-coupling systems
- Flow switch included for single phase pump with motor power $\leqslant 1.1 \mathrm{~kW}$

Working Conditions

- Liquid temperature: $0-40^{\circ} \mathrm{C}$
- Liquid temperature: $0-40^{\circ}$

Motor

- Frequency/Pole number: $50 \mathrm{~Hz} / 2$
- Insulation class: $:$
- Protection class: IPX
- Bearing: Ball type Mechanical seal: Double-end mechanical seal

Identification Codes
50 EDS U m 9-6-0.37

Technical Data

Model		Power		Discharge mm (inch)	Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$)	Rated Head (m)	Solid Passage (mm)
Single Phase	Three Phase	kW	HP				
50EDSUM9-6-0.37	50EDSU9-6-0.37	0.37	0.5	50 (2")	9	6	35
50EDSUm13.2-4-0.37	50EDSU13.2-4-0.37	0.37	0.5	50 (2)	13.2	4	50
50EDSUM 12-8-0.75	50EDSU12-8-0.75	0.75	1	50 (2)	12	8	35
50EDSUm 15-5.5-0.75	50EDSU15-5.5-0.75	0.75	1	50 (2")	15	5.5	50

Page 86

Dimension

Model	L1	L2	L3	14	H	H1	D	D1	D2	m
50EDSU9-6-0.37	203	178	89	121			50	110	14	16
50EDSUM9-6-0.37										
50EDSU13.2-40.0.37					575	80				
50EDSUm13.2-4-0.37										
50EDSU12-8-0.75					560	75				
50EDSUm12-8-0.75										
50EDSU15-5.5-0.75					575	80				
50EDSUM15-5.5-0.75										

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Handle	26304
2	Upper cover	нт200
3	Upere beaing seat	нт200
4	Moter body	нт200
5	oilchamber	нт200
6	Pump cover	нт200
7	Pump body	нт200
8	Impeler	нт200
9	Oil seal	
10	Mechanical seal	Yomersociston
11	Beaing	
12	Rotor	
13	Stator	

Package Information

Model	$\underset{\left(\mathrm{Kgss}^{\mathrm{Gw}}\right.}{ }$	(mm)	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{aligned} & \text { (PCS } / 20^{\text {Q TEU }} \mathbf{} \end{aligned}$
50EDSU9-6-0.37	36	750	290	368	372
50EDSUM9-6-0.37	37	750	290	368	372
50EDSU13.2-4-0.37	36	750	290	368	372
50EDSUm13.2-4.0.37	37	750	290	368	372
50EDSU12-8-0.75	38	750	290	368	372
50EDSUM 12-8-0.75	39	750	290	368	372
50EDSU15-5.5-0.75	38	750	290	368	72
50EDSUM15-5.5-0.75	39	750	290	368	372

(Hose coupling as standard.
4

Applications

- Drainage of wastewater from the attenuation tank, purifying tank and sewage tank in water treatment plant
- Drainage of waste water containing fibrous additives from leather factory and food processing factory.
- Sewage management, accumulated water, septic tank, stock farm.
- Pumping sewage form hotels, restaurants, schools and public buildings

Features

- Semi-open Vortex Impeller design, suitable for transfer of liquid containing impurities and long fiber substanc
- Flexible installations with hoses, pipes or quick-coupling systems

Working Conditions

- Liquid temperature: $0-40^{\circ} \mathrm{C}$
- Max immersion depth: 5 m

Motor

- Frequency/Pole number: $50 \mathrm{~Hz} / 2$
- Frequency/Pole nu
- Protection class: IPX
- Bearing: Ball type
- Mechanical seal: Double-end mechanical seals

Identification Codes
65 EDS U m 24-8.5-1.5

Technical Data

Model		Power		Discharge mm (inch)	Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$)	Rated Head (m)	$\begin{gathered} \text { Solid Passage } \\ (\mathrm{mm}) \end{gathered}$
Single Phase	Three Phase	kW	HP				
65EDSUm24-8.5-1.5	65EDSU24-8.5-1.5	1.5	2	65 (2.5 ${ }^{\text {² }}$)	24	8.5	50
65EDSUM24-12.5-2.2	65EDSU24-12.5-2.2	2.2	3	65 (2.5")	24	12.5	50
-	65EDSU30-11-3	3	4	65 (2.5 ${ }^{\text {² }}$)	30	11	55
-	65EDSU30-16-4	4	5.5	65 (2.5")	30	16	55

Dimension

Model	L1	L2	${ }^{13}$	L4	H	н1	D	D1	D2	м
65EDSU24-8.5-1.5	268	219	111	161	626	93	65	130	14	16
65EDSUM24-8.5-1.5					667					
65EDSU24-12.5-2.2					626					
65EDSUM24-12.5-2.2					667					
65EDSU30-11-3	260	218	118	149	806	122	80	150	18	18
65EDSU30-16-4										

Hydraulic Performance Curves

\section*{Materials Table
 | No. | Part | Material |
| :---: | :---: | :---: |
| 1 | Hande | 26304 |
| 2 | Upper cover | нт200 |
| 3 | Uper beaing seat | нт200 |
| 4 | Motor body | нт200 |
| 5 | oil chamber | нт200 |
| 6 | Pump cover | нт200 |
| 7 | Pump body | нт200 |
| 8 | Impeler | нт200 |
| 9 | Oil seal | |
| 10 | Mechanical seal | Unowsictisen |
| 11 | Beaing | |
| 12 | Rotor | |
| 13 | Stator | |

Package Information

Model	$\mathbf{G W}$ $(\mathbf{K g s})$	\mathbf{L} $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	\mathbf{H} (\mathbf{m})	Quantity $($ (PCSI20 TEU $)$
65EDSU24-8.5-1.5	58	848	358	311	294
65EDSUm24-8.5-1.5	60	848	358	311	294
65EDSU24-12.5-2.2	60	848	358	311	294
65EDSUm24-12.5-2.2	62	918	338	306	294
65EDSU30-11-3	68	848	358	311	294
65EDSU30-16-4	69	918	338	306	294

Applications

- Drainage of wastewater from the attenuation tank, purifying tank and sewage tank in water treatment plant
- Drainage of waste water containing fibrous additives from leather
factory and food processing factory.
- Sewage management, accumulated water, septic tank, stock farm.
Pumping sewage form hotels, restaurants, schools and public building

Pumping sewage form hotels, restaurants, schools and public buildings

Features

- Semi-open Vortex Impeller design, suitable for transfer of liquid containing impurities and long fiber substance
- Flexible installations with hoses, pipes or quick-coupling systems

Working Conditions

-Liquid temperature: 0-40 ${ }^{\circ} \mathrm{C}$
Max immersion depth: 5 m
Motor

- Frequency/Pole number: $50 \mathrm{~Hz} / 2$
- Insulation class: F

Protection class: IPX8
Mechanical seal: Double-end mechanical seals
Identification Codes
80 EDS U m 30-4.5-1.5

Technical Data

Model		Power		Discharge mm (inch)	Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$)	Rated Head (m)	Solid Passage(mm)
Single Phase	Three Phase	kW	HP				
80EDSUm30-4.5-1.5	80EDSU30-4.5-1.5	1.5	2	80 (3)	30	4.5	76
80EDSUM30-7-2.2	80EDSU30-7-2.2	2.2	3	80 (3)	30	7	76

Dimension

Model	L1	L2	L3	14	н	H1	D	D1	D2	м
80EDSU30-4.5-1.5	260	218	118	149	665	122	80	150	18	18
80EDSUm30-4.5-1.5					706					
80EDSU30-7-2.2					665					
80EDSUm 30-7-2.2					706					

Hydraulic Performance Curves

Materials Table		
No.	Part	Material
1	Hande	26304
2	Upper cover	нт200
3	Upper beaing seat	нт200
4	Molor body	нт200
5	Oilchamber	нт200
6	Pump cover	HT200
7	Pump body	нт200
8	Impeller	HT200
9	Oil seal	
10	Mectanical seal	
11	Beaing	
12	Rootr	
13	Stator	

Package Information

Model	$\mathbf{6 W}$ $(\mathbf{K g s})$	\mathbf{L} $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	\mathbf{H} $(\mathbf{m m})$	Quantity (PCS/20TEU)
80EDSU30-4.5-1.5	58	918	338	306	294
80EDSUm30-4.5-1.5	61	918	338	306	294
80EDSU30-7-2.2	62	918	338	306	294
80EDSUm30-7-2.2	63	918	338	306	294

Applications

- Used In pressure sewage system
- Drainage of wastewater from individual residences, apartment buildings,
recreational developments, models
- Transferring wastewater of commercial buildings, industrial plants,
- Schools, federal state and local parks,
- To transfer various wastewater and sewage

Features

- The pump has a semi-open impeller design with a reliable grinding system.
- The large-diameter impeller generates a high pressure and the grinding system grinds solids into small pieces, which can be drained without clogging the pipes. - Flow switch included for single phas pump with anto-coupling system.

Working Conditions

- Liquid temperature: $0-40^{\circ} \mathrm{C}$

Motor

- Frequency/Pole number: $50 \mathrm{~Hz} / 2$
- Insulation class: F
Bearing: Ball type
- Mechanical seal: Double-end mechanical seals
Identification Codes 32EDS P m 3.6-17-1.1/OG
- Cutting Blade Rated Power (kW)
Rated Head (m) Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$) Single Phase Motor
(Omitted for three-phase motor) Semi-openlmpeller Submersible Sewage Pu
Technical Data

Model		Power		Discharge mm (inch)	Rated Flow$\left(\mathrm{m}^{3} / \mathrm{h}\right)$	Rated Head (m)	Solid Passage (mm)
Single Phase	Three Phase	kW	HP				
32EDSPm3.6-17-1.1/QG	32EDSP3.6-17-1.1/QG	1.1	1.5	32 (11/4")	3.6	17	-
32EDSPm3.6-23-1.5/Q6	32EDSP3.6-23-1.5/QG	1.5	2	32 (11/4")	3.6	23	-
32EDSPm3.6-30-2.2/QG	32EDSP3.6-30-2.2/QG	2.2	3	32 (11/4*)	3.6	30	-

Dimension

Hydraulic Performance Curves

No.	Part	Material
1	Handle	26304
2	Upper cover	нт200
3	Upper beaing seat	HT200
4	Moter body	нт200
5	Oil chamber	HT200
6	Pump cover	нт200
7	Pump body	нт200
8	Impeller	нт200
9	Cutting ing	AII304
10	Radial a luter	AIIB34
11	Oil seal	
12	Mechanical seal	
13	Beaing	
14	Rotor	
15	Stator	

Package Information

Model	$\stackrel{\mathrm{G}}{(\mathrm{Kgs})}$	$\left(\mathrm{m}_{\mathrm{L}}^{\mathrm{L}}\right.$	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	(PCS/20'TEU)
32EDSP3.6-17-1.1/QG	38	848	358	311	294
32EDSPm3.6-17-1.1/Q6	39	848	358	311	294
32EDSP3.6-23-1.5/QG	48	848	358	311	294
32EDSPm3.6-23-1.5/Q6	50	848	358	311	294
32EDSP3.6-30-2.2/QG	50.5	848	358	311	294
32EDSPm3.6-30-2.2/Q6	52	848	358	311	294

Applications

- Used In pressure sewage system
- Drainage of wastewater from individual residences, apartment buildings, recreational developments, models
- Transferring wastewater of commercial buildings, industrial plants,
mpling, small hospitals
- Schools, federal, state and local parks, wastewater drainage
- To transfer various wastewater and sewage

Features

- The pump has a semi-open impeller design with a reliable grinding system.
- The large-diameter impeller generates a high pressure and the grinding system
grinds solids into small pieces, which can be drained without clogging the pipes
- The pumps can be connected to pipes directly or to an auto-coupling system.

Working Conditions

- Liquid temperature: $0-40^{\circ} \mathrm{C}$
- Max immersion depth: 5 m

Motor

- Frequency/Pole number: $50 \mathrm{~Hz} / 2$
- Insulation class: F
- Bearing: Ball type
- Mechanical seal: Double-end mechanical seals

Identification Codes
50 EDS P 12-19-2.2/QG

Technical Data

Model	Power		Discharge mm (inch)	Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$)	Rated Head (m)	Solid Passage (mm)
	kW	HP				
50EDSP12-19-2.2/QG	2.2	3	50 (2")	12	19	-
50EDSP12-22-3/QG	3	4	50 (2)	12	22	-
50EDSP12-30-4/QG	4	5.5	50 (2")	12	30	-

Dimension

Model	L1	L2	L3	L4	H	H1	D	D1	D2	M
50EDSP12-19-2.2/QG	243	212	106	145	559	73	40	100	14	16
50EDSP12-22-3/QG	243	212	106	145	588	73	40	100	14	16
50EDSP12-30-4/QG	243	212	106	145	588	73	40	100	14	16

Hydraulic Performance Curves

No.	Part	Material
1	Hande	26304
2	Upper cover	HT200
3	Upper beaing seat	нтго0
4	Moter body	Hi200
5	Oil chamber	HT200
6	Pump cover	HT200
7	Pump body	нтго0
8	Impeler	нт200
9	Cutting ing	AIS1304
10	Radial a cuter	AIS1304
11	Oil seal	
12	Mechanical seal	
13	Beaing	
14	Rotor	
15	Stator	

Package Information

Model	$\mathbf{G W}$ $(\mathbf{K g s})$	\mathbf{L} $\mathbf{(m m})$	\mathbf{w} $(\mathbf{m m})$	\mathbf{H} $(\mathbf{m m})$	Quantity $($ PCS/20TEU
50EDSP12-19-2.2/QG	53	848	358	311	294
50EDSP12-22-3/QG	60	848	358	311	294
50EDSP12-30-4/QG	63	848	358	311	294

Guide Rail System

- Suitable for pumps with flange conforming ISO7005-92 standard.
- Automatic engagement with flanged elbow

Includes

Duck-foot bend
Guide hook
Flange connector
Upper guide support
Bolts and lock washers
(Foundation bolts and guide pipes are not included)

Identification Codes

EDS 50-50

Pipe Diameter
Pump Outlet
LEO Product Style

Dimension

Model	D	D1	D2	T1	T2	T3	T4	T5	T6	T7	T8	T9	K1	K2	K3	H1	H2	H3	S	M	P	d	d1	C
EDS50-50	110	90	50	75	182	230	28	55	165	190	12	525	115	100	45	170	205	260	80.5	12	18	25	14	G2
EDS65-65	130		65	85	182	230	28	55	190	210	17	59	145	120	45	175	220	270	89	12	18	32	14	G2.5
EDS80-80	150	-	80	85	182	230	28	55	220	242	27	59	175	160	41	190	246	290	115	12	18	32	18	63

Package Information: Carton (Wooden Case Optional)

Model	carton				Wooden Case			
	L(mm)	W(mm)	H(mm)	G.W(kg)	L(mm)	W (mm)	$\mathrm{H}(\mathrm{mm})$	G.W(kg)
EDS50.50	390	345	260	18.5	410	355	250	23
EDS6565	430	375	285	24	440	375	275	28
EDS80-80	475	410	310	32.5	485	405	305	36

WQ(D) $0.75-7.5 \mathrm{~kW}$

WQ 11 - 45 kW

Application

Wastewater drainage in factories, construction sites and commercial
facilities

- Drainage system in municipal sewage treatment plants
- Drainage station in residential quarters
- Municipal projects
- Methane pools and field irrigation in countryside

Pump

- Max. immersion depth: 5 m
- Max. liquid temperature: $+40^{\circ} \mathrm{C}$
- Liquid pH value: $6.5-8.5$
- Max. liquid density: $1.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
- Water temperature: up to $35^{\circ} \mathrm{C}$
- Max.Immersion depth: 10 m
- Allowed by the particle diameter: $20-80 \mathrm{~mm}$

Motor

- Copper winding
- Protection class: IP6

Technical Data

Model	$\begin{array}{\|c\|} \hline \text { Voltage } \\ \hline \mathbf{v} \\ \hline \end{array}$	Motor Power		Outlet in	Guide Rial Fitting	Max flow$\mathrm{m}^{3 / h}$	Max headm	$\begin{array}{\|c\|} \hline \text { Speed } \\ \hline \text { r.p.m } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Impeller passage } \\ \hline \mathrm{mm} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { N.W } \\ \hline \mathrm{kg} \\ \hline \end{array}$	Packing dimension mm
		kW	HP								
S0WQ10-10-0.75	380	0.75	1	2	50.50	28	13	2850	25	18	500'260'240
50WQOD10-10.0.75	220	0.75	1	2	50.50	28	13	2850	25	19	500'260'240
50Wa8-16-1.1	380	1.1	1.5	2	50.50	25	19	2850	20	23.5	$510 \cdot 260 \cdot 240$
50WQD8-16-1.1	220	1.1	1.5	2	50.50	25	19	2850	20	24.5	$520 \cdot 260^{\prime 240}$
65WQ15-10-1.1	380	1.1	1.5	$21 / 2$	50.65	28	15	2850	25	23.5	510:260'240
65WOD15-10-1.1	220	1.1	1.5	$21 / 2$	50.65	28	15	2850	25	24.5	520.260'240
50WQ8-20-1.5	380	1.5	2	2	50.50	25	22	2850	20	25	520:260'240
50WQD8-20-1.5	220	1.5	2	2	50.50	25	22	2850	20	26	520.260'240
${ }^{65 W Q 15-15-1.5}$	380	1.5	2	21/2	50.65	35	20	2850	25	25	520:260:240
65WOD15-15-1.5	220	1.5	2	$21 / 2$	50.65	35	20	2850	25	26	$520 \cdot 260 \cdot 240$
50WQ15-20-2.2	380	2.2	3	2	50.50	38	23	2850	25	44	680'260'300
65 Q 25 -17-2.2	380	2.2	3	21/2	65.65	44	22	2850	25	42	680'260'300
80WQ40-9.9.2	380	2.2	3	3	65.80	65	16	2850	30	41	710-260'290
50WQ15-26-3	380	3	4	2	50.50	47	29	2850	25	49	710'260'290
65WQ25-22-3	380	3	4	21/2	65.65	55	26	2850	30	52	$710 \cdot 260 \cdot 290$
80WQ40-13-3	380	3	4	3	80.80	72	21	2850	30	51	740-240'290
100WO60-9.3	380	3	4	4	80-100	88	19	2850	30	53	740'240'290
65WQ25-28-4	380	4	5.5	21/2	65.65	55	32	2850	25	61	770:260'230
80WO40-18-4	380	4	5.5	3	80.80	80	24	2850	30	64	800'260'290
100W060-13-4	380	4	5.5	4	80-100	89	24	2850	30	65	800'260'290
50WQ15-40-5.5	380	5.5	7.5	2	50.50	50	43	2850	25	73	790-290*310
80WQ30-30-5.5	380	5.5	7.5	3	80.80	47	37	2850	30	73	810'290'320
100WQ65-15-5.5	380	5.5	7.5	4	100-100A	108	25	2850	30	79	820*300'350
50WQ20-45-7.5	380	7.5	10	2	50.50	59	48	2850	25	112	934*364*435

Model	Voltage	Motor Power		Outlet	Guide Rial Fitting	$\begin{gathered} \text { Max flow } \\ \mathrm{m}^{3 / h} \end{gathered}$	Max head m	Speedr.p.m	$\begin{gathered} \hline \begin{array}{c} \text { Impeller } \\ \text { passage } \end{array} \\ \hline \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{N} . \mathrm{W} \\ \hline \mathrm{~kg} \end{gathered}$	Packing dimension mm
	\checkmark	kW	HP	in							
80Wa30-33-7.5	380	7.5	10	3	80-80	77	39	2850	30	112	934 ${ }^{\text {3644*35 }}$
100WQ65-22-7.5	380	7.5	10	4	100-100A	108	34	2850	35	115	964-364-425
150WQ100-10.7.5	380	7.5	10	6	150-150	140	20	2850	35	115	1010-370 410
100WQ65-15-5.54P)	380	5.5	7.5	4	100-100	145	21	1450	55	126	$1030^{\circ} 450^{\circ} 530$
150WQ110-10-5.5(4P)	380	5.5	7.5	6	150-150	200	16	1450	55	153	$1030^{\circ} 450^{\circ} 530$
100WQ100-15-7.5(4P)	380	7.5	10	4	100-100	170	21	1450	55	156	$1030^{*} 450 \times 530$
150WQ150-10-7.5(4P)	380	7.5	10	6	150-150	220	16	1450	75	163	1050'500'600
200WQ250-6-7.54P)	380	11	15	8	200-200	372	12	1450	55	200	730-490'1115
100WQ 100-25-11(4P)	380	11	15	4	100-100	180	26	1450	50	221	$500 \cdot 600 \cdot 1050$
150WQ130-15-11(4P)	380	11	15	6	150-150	270	20	1450	50	239	$500^{\circ} 600 \times 1180$
200WQ300-7-11(4P)	380	11	15	8	200-200	360	18	1450	65	252	$500^{\circ} 600 \times 1180$
100WQ $100 \cdot 30-15(4 \mathrm{P}$)	380	15	20	4	100-100	190	32	1450	50	239	$500^{\circ} 600 \times 1180$
150WQ130-20-15(4P)	380	15	20	6	150-150	300	23	1450	50	259	$500^{\circ} 600^{\circ} 1180$
200WQ250-11-15(4P)	380	15	20	8	200-200	380	22	1450	65	274	$500^{\circ} 600 \cdot 1180$
100WQ100-29-18.5(4P)	380	11	15	4	100-100	200	35	1450	50	290	$640^{\circ} 4880 \cdot 1270$
150WQ180-20-18.5(4P)	380	18.5	25	6	150-150	300	26	1450	50	300	$510^{\circ} 640^{\circ} 121210$
200WQ250-15-18.5(4P)	380	18.5	25	8	200-200	400	25	1450	65	300	$510^{\circ} 640^{\circ} \cdot 1210$
100WQ100-32-22(4P)	380	22	30	4	100-100	210	40	1450	50	324	$680^{\circ} 490{ }^{\circ} 1360$
150WQ 180-25-22(4P)	380	22	30	6	150.150	330	28	1450	50	324	$510.640^{\circ} 1250$
200WQ300-15-22(4P)	380	22	30	8	$200-200$	450	28	1450	65	324	$510^{\circ} 640 \times 1250$
150WQ 180-30-30(4P)	380	30	40	6	150-150	350	38	1450	70	445	$630 \cdot 660 \cdot 1360$
200WQ250-22-30(4P)	380	30	40	8	200-200	500	34	1450	70	446	$660^{\circ} \cdot 690 \cdot 1360$
250W9600-9-30(4P)	380	30	40	10	250-250	600	28	1450	70	446	$660 \cdot 710^{\circ} 1360$
300W0800-7-30(4P)	380	30	40	12	300-300	1000	18	1450	80	486	700 ${ }^{\circ} 750 \cdot 1450$
150WQ160-45-37(4P)	380	37	50	6	150-150	380	43	1450	70	490	$630^{\circ} 660 \cdot 11360$
200WQ350-25-37(4P)	380	37	50	8	200-200	500	38	1450	70	492	$660^{\circ 690} \cdot 1360$
250WQ600-12-37(4P)	380	37	50	10	250-250	720	32	1450	70	495	$660 \cdot 710 \cdot 1360$
300WQ900-8-37(4P)	380	37	50	12	300-300	1200	22	1450	80	535	700'750'1450
200WQ380-28-45(4P)	380	45	60	8	200-200	800	38	1450	70	545	$660 \cdot 710 \cdot 1450$
250Wa600-15-45(4P)	380	45	60	10	250-250	600	43	1450	70	545	6607700 1500
300W0800-12-45(4P)	380	45	60	12	300-300	1300	25	1450	80	575	700'750'1600

Materials Table

No.	Part	Material
01	Handle	Steel
02	Upper cover	castion
${ }^{0}$	Capactior	
04	Thermal protector	
05	Upper bearing seat	Castion
${ }_{0} 6$	Beanng	
07	Stator	
${ }_{0} 8$	Rotor	
09	Bearing	
10	Molor body	Castion
11	Beaing seat	Cast iron
12	Pump oody	Castion
13	Impeller	Cast ion
14	Base	Castion
15	Cable	
16	Mectranical seal	Sic-Sic/Carbon-Ceramic ($<75 \mathrm{~kW}$) Sic-Sic/Sic-Sid $>7.5 \mathrm{~kW}$)
17	Oil seal	
18	Hose coupping	Castion
19	Terminal box	Castion
20	Seal brackel	Castion
21	Wiring terminal	

Hydraulic Performance Curves

Capactic C -

Dimension

5

Model	¢D	¢A1	¢B1	\$C1	n -¢d1	h	W1	W2	H3	K	N	\bigcirc	P	Q	L	M	D2
50WQ10-10-0.75	50	50	110	140	4.¢14	204	340	160	450	100	330	95	100	85	140	205	185
50WODI0-10-0.75	50	50	110	140	4.914	204	340	160	450	100	330	95	100	85	140	205	185
50W08-16-1.1	50	50	110	140	4-¢14	202	350	165	460	100	340	90	105	82	145	210	187
50WQDS-16-1.1	50	50	110	140	4-¢14	202	370	165	480	100	340	90	105	82	145	210	187
65WQ15-10-1.1	65	50	110	140	4-¢14	212	350	165	460	122	345	90	105	82	145	208	187
${ }^{65 W}$ OD15-10-1.1	65	50	110	140	4-¢14	212	370	165	480	122	345	90	105	82	145	208	187
50wa8-20-1.5	50	50	110	140	4-¢14	202	370	165	480	100	340	90	105	82	145	210	187
50wads-20-1.5	50	50	110	140	4. $¢ 14$	202	390	165	500	100	340	90	105	82	145	210	187
65WQ15-15-1.5	65	50	110	140	4.¢14	212	370	165	480	122	345	90	105	82	145	208	187
${ }^{65 W O D} 15-15-1.5$	65	50	110	140	4.914	212	390	165	500	122	345	90	105	82	145	208	187
50WQ15-20-2.2	50	50	110	140	4-¢14	213	445	224	550	100	360	105	114	98	165	230	212
65W025-17-2.2	65	65	130	160	4-914	223	445	224	550	122	365	105	115	100	165	228	215
80WO40-9.-2.2	80	65	130	160	4-Ф14	251	455	233	560	122	385	105	112	96	160	245	208
50WQ15-26-3	50	50	110	140	4-¢14	212	464	224	570	100	360	105	115	97	165	230	212
65WQ25-22-3	65	65	130	160	4.914	222	464	224	570	122	365	105	115	98	165	228	213
80WQ40-13-3	80	80	150	190	4-918	262	490	250	595	140	380	105	115	98	155	235	213
100W060-9.3	100	80	150	190	4.918	292	490	250	595	150	410	105	115	98	155	255	213
65WQ25-28-4	65	65	130	160	4.¢14	241	502	242	612	122	390	115	125	110	180	243	235
80W040-18.4	80	80	150	190	4.918	272	528	270	640	140	375	105	112	98	150	230	210
100Wa60-13-4	100	80	150	190	4-918	302	528	270	640	150	405	105	112	98	150	250	210
50WQ15-40-5.5	50	50	110	140	4-¢14	${ }^{237}$	${ }^{523}$	${ }^{238}$	645	100	390	120	125	115	180	245	240
80WQ30-30-5.5	80	80	150	190	4-¢18	270	540	255	650	140	405	110	115	105	175	255	220
100Wa65-15-5.5	100	100	170	210	4-¢18	305	555	270	675	150	461	130	140	115	181	281	255
50WQ20-45-7.5	50	50	110	140	4-914	271	650	340	810	100	391	130	140	115	181	233	255
80WQ30-33-7.5	80	80	150	190	4-¢18	310	650	340	810	140	431	130	140	115	181	261	255
100wa65-22-7.5	100	100	170	210	4.918	340	660	350	820	150	495	140	150	130	205	305	280
150WQ100-10-7.5	150	150	225	265	8-¢18	560	670	362	830	230	565	145	160	135	210	345	295

Dimension

soness. 1 vemese

Model	¢D	¢A1	¢B1	¢C1	$\mathrm{n}-\Phi \mathrm{d} 1$	h	w1	w2	H3	K	N	-	P	Q	L	M	D2
100WQ65-15-5.54P)	100	100	170	210	4-918	362	677	363	835	150	620	190	200	175	280	380	375
150WQ(110-10.5.5.(4P)	150	150	225	265	8.918	415	697	383	855	230	680	195	210	170	275	410	380
100WQ--100-15-7.5(4P)	100	100	170	210	4.918	382	695	381	853	150	675	205	225	190	320	420	415
150WQ150-10-7.5(4P)	150	150	225	265	8-¢18	420	708	394	866	230	705	195	216	170	300	345	386
200W0250-6-7.54(P)	200	200	280	320	8-918	540	750	330	910	260	875	225	256	192	350	550	448
100WQ100-25-11(4P)	100	100	170	210	4-¢18	370	730	410	980	150	680	210	240	220	320	420	460
150WQ $130-15-11(4 \mathrm{P}$)	150	150	225	265	8-918	450	780	460	1020	230	760	200	240	190	350	458	430
200Wa300-7-11(4P)	200	200	280	320	8.918	590	780	460	1020	260	875	205	240	190	370	570	430
100WQatoo-30-15(4P)	100	100	170	210	4-918	370	770	410	1010	150	680	210	240	220	320	420	450
150WQa130-20-15(4P)	150	150	225	265	$8-918$	450	820	460	1050	230	760	200	240	190	350	485	430
200WQ250-11-15(4P)	200	200	280	320	8-¢18	590	820	460	1060	260	875	205	240	190	370	570	430
100WQ100-29-18.5(4P)	100	100	170	210	4-918	390	855	480	1100	150	690	220	240	220	320	420	440
150WQ $180-20-18.5(4 \mathrm{P}$)	150	150	225	265	8-918	450	885	510	1130	230	760	200	240	190	350	485	430
200WQ250-15-18.5(4P)	200	200	280	320	8 8-¢18	590	885	510	1130	260	875	205	240	190	370	570	430
100WQ100-32-22(4P)	100	100	170	210	4.918	390	${ }^{885}$	480	1130	150	690	220	240	220	320	420	460
150WQ $180-255-22(4 \mathrm{P}$)	150	150	225	265	8.918	450	915	510	1160	230	760	200	240	190	350	485	430
200wa300-15-22(4P)	200	200	280	320	8-¢18	590	915	510	1160	260	875	205	240	190	370	570	430
150WQ 180-30-30(4P)	150	150	225	265	8-¢18	463	972	560	1200	230	810	240	270	230	360	495	500
200W0250-22:30(4P)	200	200	280	320	8-918	593	960	550	1200	260	950	250	310	220	400	600	530
250W9600.9.30.4P)	250	250	335	375	12-¢18	665	1020	605	1250	300	1030	260	330	240	410	615	570
300was00-7-30(4P)	300	300	395	440	12-918	750	1070	650	1300	350	1040	270	330	240	410	620	570
150WQ160-45-37(4P)	150	150	225	265	28-¢18	463	972	560	1185	230	810	240	270	230	360	495	500
200WQ350-25-37(4P)	200	200	280	320	8-918	593	960	550	1170	260	950	250	310	220	400	600	530
250W0600-12:37(4P)	250	250	335	375	12-巾18	665	1020	605	1230	300	1000	260	330	240	410	615	570
300W9900-8.37(4P)	300	300	395	440	12-¢22	750	1070	650	1280	350	1040	270	330	240	410	620	570
200wa380-28-45(4P)	200	200	280	320	8-¢18	560	1045	585	1250	260	950	250	310	220	400	600	530
250Wa600-15-45(4P)	250	250	335	375	12-918	665	1065	605	1230	300	1000	260	330	240	410	615	570
300W0800-12-45(4P)	300	300	395	440	12-922	750	1110	650	1350	1040	1270	330	410	240	620	590	650

Flange Elbow

Model	D1	D2	D3	D4	D5	D6	D7	L1	L2	L3	L4	m	d1	d2
32.32 Flange Elibow	32	69	90	32	69	90	120	100	60	96	10	16	14	14
40.50 Flange Elibow	40	78	100	50	${ }^{88}$	110	140	120	60	110	15	16	14	14
50.50 Flange Elibow	50	${ }^{88}$	110	50	${ }^{88}$	110	140	105	105	120	15	16	14	14
65.65 Flange Eliow	65	108	130	65	108	130	160	130	130	145	20	16	14	14
80.80 Flange Elibow	${ }_{80}$	124	150	80	124	150	190	155	155	145	15	18	18	18

Hose Coupling

Dimension

Model	D1	D2	D3	D4	D5	L1	L2	L3	L4	m	d1
- $50-40$ Hose Coupling	50	88	110	${ }^{38}$	48	115	65	120	15	16	14
-65-50 Hose Coupling	65	108	130	51	61	125	${ }^{68}$	145	20	16	14
-80.60 Hose Coupling	80	124	150	60	70	140	75	145	15	16	18
50-50 Hose Coupling	50	88	110	50	58	140	120	120	15	16	14
65.65 Hose Coupling	65	108	130	65	74	160	130	145	20	18	14
80.80 Hose Coupling	80	124	150	80	87	190	135	145	15	18	18

Dimension

Guide Rail System

- Suitable for pumps with flange conforming ISO7005-92 standard. - Automatic engagement with flanged elbow

Includes

- Duck-foot bend
- Guide hook
- Flange connector

Upper guide support

- Bolts and lock washers
(Foundation bolts and guide pipes are not included)

Model	T1	T2	т3	T4	T5	т6	7	т8	т9	к1	K2	к3	s	H1	H2	нз	D	n-m	P	A
50.50	288	185	70	25	63	160	200	10	50	120	120	40	125	250	203	170	25	2-M10x40	M16	Ф1104-¢14
50.65	288	185	70	25	${ }^{63}$	160	200	10	50	120	120	40	125	250	203	170	25	2-M10x40	M16	¢11074-¢14
${ }_{65-65}$	288	195	80	25	63	190	220	10	60	120	120	40	130	250	203	175	32	2-M10x40	M16	Ф1304-¢14
65.80	288	195	80	25	${ }^{63}$	190	220	10	60	120	120	40	130	270	220	175	32	2-M10x40	M16	\$13014-914
80.80	288	195	80	25	63	220	250	15	60	170	170	40	165	290	242	192	32	2-M10x40	M16	¢1504-¢18
80-100	288	195	80	25	${ }^{63}$	220	250	15	60	170	170	40	165	290	242	192	32	2-M10x40	M16	¢15074.¢18
100-100	410	315	170	30	60	320	385	17	90	260	300	48	200	305	245	200	32	2-M12250	M18	Ф17014.¢18
150-150	410	260	280	30	${ }^{60}$	400	410	90	100	300	300	55	300	480	388	300	40	2-M12260	M20	\$22518-¢18
200-200	410	260	280	30	${ }^{60}$	400	450	100	100	320	300	54	350	550	432	320	40	2-M12260	M22	\$28018-¢18
250-250	410	260	280	30	60	460	560	100	100	360	430	65	380	630	453	335	40	2-M12860	M22	${ }_{\text {¢ }}$ 35512

Hydraulic Performance Curves

Materials Table

Package Information

Model		(mm)	$\underset{(\mathrm{mm})}{\underset{\mathbf{w}}{2}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \text { Quantity } \\ \text { (PCS/20'TEU) } \end{gathered}$
EDH(m)2-20	10.7	465	225	270	1044
EDH(m)2-30	11.1	465	225	270	1044
EDH(m)2-40	12.4	465	225	270	1044
EDH(m)2-50	12.8	465	225	270	1044
EDH(m)2-60	13.8	465	225	270	1044

Hydraulic Performance Curves

Materials Table

Package Information

Model	$\underset{(\mathrm{Kgs})}{\mathrm{K}_{2}}$	$\mathrm{m}_{\mathrm{Lm})}^{\mathrm{L}}$	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	Quantity (PCSI20'TEU)
EDH(m)4-20	11.5	465	225	270	1044
EDH(m)4-30	12.9	465	225	270	1044
EDH(m)4-40	13.8	465	225	270	1044
EDH(m)4-50	18.2	515	225	297	870
EDH(m)4-60	18.6	515	225	297	870

EDH

Application

- It is applicable to household water supply, equipment support, pipeline pressurization, garden watering, vegetable greenhouse watering, fish farming and poultry raising, industrial and mining, wate supply and drainage of enterprises and high-rise buildings, central air conditioner and centralized heating circulation system, etc.

Pump

- AISI 304 shaft
- Max. liquid temperature: $+85^{\circ} \mathrm{C}$
- Altitude: up to 1000 m
- Max. suction: 8 m
- Max. inlet pressure: limited by max. operating pressure

Motor

- Motor with copper winding
- Built-in thermal protector for single phase motor

Insulation class: F

Identification Codes
EDH(m) 10-30 L Impeller Stage $\times 10$ Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$) Single phase (Three-phase model without m) Stainless Steel Horizontal Multistage Pump
Technical Data

Model	Power		$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	6	7	8	9	10	11	12	13	14
	kW	HP	$\mathbf{O}(1 / \mathrm{min})$	100	117	133	150	167	183	200	217	233
EDH(m) 10-10	0.75	1.0	$\underset{(\mathrm{m})}{\mathrm{H}}$	9.1	8.7	8.3	7.8	7.1	6.4	5.4	4.4	3.1
EDH $(\mathrm{m}) 10-20$				17.9	17.1	16.3	15.3	13.9	12.4	10.7	8.4	6.2
EDH $(\mathrm{m}) 10 \mathrm{O}-3$	1.1	1.5		27.5	26.5	25.2	23.6	21.7	19.3	17	14	10
EDH $(\mathrm{m}) 10-40$	1.5	2.0		38.7	37.2	35.9	33.9	31.6	28.7	24.9	19.7	15.9
EDH(m)10-50	2.2	3.0		47.2	45.4	43.6	41	38.2	34.2	30	24.5	18

Dimension

Model	L	A	C	D	E	F	G	H	J	M	N
$E D H(m) 10-10$	568	278	138	160	108	130	G2	245	120	$\Phi 233$	140
$E D H(m) 10-20$	568	278	138	160	108	130	$G 2$	245	120	$\Phi 233$	140
$E D H(m) 10-30$	568	278	138	160	108	130	$G 2$	245	120	$\Phi 233$	140
$E D H(m) 10-40$	626	287	138	160	108	130	$G 2$	248	120	$\Phi 233$	140
$E D H(m) 10-50$	626	287	138	160	108	130	$G 2$	248	120	$\Phi 233$	140

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Pump body	${ }^{\text {Als }} 304$
2	Supoot	z102
3	Botoon plato	Castion
4	Stator	
5	Rootr	
6	Bearng	
7	Rear cover	2102
8	Fan	Pp
9	Fancover	O8F
10	Bractet cover	Ast 304
11	Mectanaical seal	siccarbon
12	Dintuer 3	AIS 304
13	Difuser 2	Ast 304
14	Steve	Als 304
15	Impeler	Als 304
16	Difuser 1	Als 304
17	Pressure plate	${ }^{\text {AsI } 304}$
18	Specerb bush	ASI 304

Package Information

Model	$\underset{(\mathrm{Kgs})}{(\mathrm{Kw}}$	(mm)	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{m})_{\mathrm{H}}^{\mathrm{H}}}{ }$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCS } \left.12^{\circ} \text { TEU }\right) \end{aligned}$
$\mathrm{EDH}(\mathrm{m}) 10-10$	21.5	610	265	317	540
EDH(m)10-20	22	610	265	317	540
EDH(m)10-30	23	610	265	317	540
$\mathrm{EDH}(\mathrm{m}) 10-40$	29	660	265	317	480
EDH(m)10-50	30.7	660	265	317	480

EDH

Application

- It is applicable to household water supply, equipment support, pipeline pressurization, garden watering, vegetable greenhouse supply and drainage of enterorises and high-rise buildings, central air conditioner and centralized heating circulation system, etc.

Pump

- AISI 304 shaft
- Max. liquid temperature: $+85^{\circ} \mathrm{C}$
- Altitude: up to 1000 m
- Max. suction: 8 m
- Max. inlet pressure: limited by max. operating pressure

Motor

- Motor with copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IP55
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Identification Codes
EDH(m) 15-20
Impeller Stage $\times 10$
Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$)
Single phase (Three-phase model without m)
Single phase (Three-phase model without m)

Technical Data

Model	Power		$\mathrm{O}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	9	11	13	15	17	19	22	25	28
	kW	HP	$\mathbf{Q}(1 / \mathrm{min})$	150	183	217	250	283	317	367	417	467
EDH(m)15-10	1.1	1.5	$\underset{(m)}{\text { H }}$	11.6	11	10.4	9.7	9.1	8.5	7.7	5.9	4.8
EDH(m)15-20	2.2	3.0		25.4	24.5	23.4	22.2	21.1	19.7	17.4	15	12
EDH 15-30	3.0	4.0		38.4	37.2	35.8	34.1	32.3	30.2	26.6	22.8	18.8

Dimension

Model	L	A	C	D	E	F	G	H	J	M	N
$E D H(m) 15-10$	568	278	138	160	108	130	G2	245	120	$\Phi 233$	140
$E D H(m) 15-20$	626	287	138	160	108	130	G2	248	120	$\Phi 233$	140
$E D H 15-30$	626	287	138	160	108	130	$G 2$	248	120	$\Phi 233$	140

Hydraulic Performance Curves

Materials Table

Package Information

Model	$\underset{\left(\mathrm{Kgss}^{\mathrm{Gw}}\right)}{ }$	(mm)	$\underset{(m \mathrm{~m})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCS/20 TEU } \end{aligned}$
EDH(m)15-10	20.5	610	265	317	540
EDH(m)15-20	28.8	660	265	317	480
EDH15-30	33	660	265	317	480

Application

- It is applicable to household water supply, equipment support, pipeline pressurization, garden watering, vegetable greenhouse
watering, fish farming and poultry raising, industrial and mining, wat supply and drainage of enterprises and high-rise buildings, central air conditioner and centralized heating circulation system, etc.

Pump

- AISI 304 shaft
- Max. liquid temperature: $+85^{\circ} \mathrm{C}$
- Altitude: up to 1000 m
- Max. suction: 8 m
- Max. inlet pressure: limited by max. operating pressure

Motor

- Motor with copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IP55
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Identification Codes

EDH(m) 20-20

> Impeller Stage $\times 10$
> Rated Flow $\left(\mathrm{m}^{3} / \mathrm{h}\right)$

Single phase (Three-phase model without m) Stainless Steel Horizontal Multistage Pump

Technical Data

Model	Power		$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	9	12	15	18	20	22	25	28	31
	kW	HP	$\mathbf{Q}(1 / \mathrm{min})$	150	200	250	300	333	367	417	467	517
EDH(m)20-10	1.1	1.5	${ }_{\text {(}}$ ($)$	12.6	11.9	11.2	10.2	9.8	8.7	8	6.8	5.2
EDH(m)20-20	2.2	3.0		26.5	25.7	24.5	23.1	22	20.8	18.5	15.9	13.2
EDH20-30	4.0	5.5		41.2	40.3	38.9	36.9	35.3	33.2	30.1	26.3	22

Dimension

Model	L	A	C	D	E	F	G	H	J	M	N
$E D H(m) 20-10$	568	278	138	160	108	130	G2	245	120	$\Phi 233$	140
$E D H(m) 20-20$	626	287	138	160	108	130	$G 2$	248	120	$\Phi 233$	140
$E D H 20-30$	642	278	190	220	170	200	$G 2$	240	120	$\Phi 233$	140

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Pump body	${ }^{\text {ASI } 304}$
2	Supoor	2102
3	Botuom pate	Castion
4	Stator	
5	Rotor	
6	Beaing	
7	Rear cover	2102
8	Fan	pp
9	Fancover	08F
10	Bracelcover	Asis 304
11	Mechanical seal	stucaron
12	Dintuer 3	Asis 304
13	Difuser 2	Asis 304
14	Steeve	Asis 304
15	Impeler	Asis 304
16	Dimser 1	AsI 304
17	Pressure pate	Asis 304
18	Spaecer bush	${ }_{\text {ASI }} 304$

Package Information

Model	$\underset{(\mathrm{Kgs})}{\mathrm{Kg}_{2}}$	(mm)	$\underset{(\mathrm{mm})}{\mathrm{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCS/20'TEU) } \end{aligned}$
EDH(m)20-10	20.5	610	265	317	540
EDH(m)20-20	28.8	660	265	317	480
EDH20-30	37.5	675	265	317	480

ECH

ECHS

Application

- It is applicable to household water supply, equipment support, pipeline pressurization, garden watering, vegetable greenhouse watering, fish farming and poultry raising, industrial and mining, water supply and ings, central air conditione and centralized heating circulation system, etc.

Pump

- AISI 304 shaf
- Max. liquid temperature: $+85^{\circ} \mathrm{C}$
- Altitude: up to 1000 m
- Max. suction: 8 m
- Max. inlet pressure: limited by max. operating pressure

Motor

- Motor with copper winding
- Built-in thermal protector for single phase moto
- Insulation class: F
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Identification Codes

ECH (S) (m) 2-30

Impeller Stage $\times 10$ Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$)
Single Phase (Three-phase without m)
Stainless Steel Wetted Parts
Stainless Steel Horizontal Multistage Pump

Technical Data

Model	Power		$\mathrm{O}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	0.6	1.2	1.8	2.4	3.0	3.6
	kW	HP	0 ($1 / \mathrm{min}$)	10	20	30	40	50	60
ECH(S)(m)2-20	0.37	0.5	$\underset{(\mathrm{m})}{\mathrm{H}}$	16	15	13	12	10	8
ECH(S)(m)2-30	0.37	0.5		24	22	20	18	16	12
ECH(S)(m) $2-40$	0.55	0.75		33	30	26	24	21	16
$\mathrm{ECH}(\mathrm{S})(\mathrm{m}) 2-50$	0.55	0.75		40	37	33	30	24	19
$\mathrm{ECH}(\mathrm{S})(\mathrm{m}) 2-60$	0.75	1.0		50	45	40	36	30	23

Dimension

Model	L1	L2	L3	L4	L5	B1	B2	H	H1	A1	A2	A3
ECH(S)(m)2-20	344.5	165.5	90	110	98.5	137	109	176.5	71	G1	G1	¢7
ECH(S)(m)2-30	362.5	183.5	90	110	116.5	137	109	176.5	71	G1	G1	Ф7
ECH(S)(m)2-40	380.5	201.5	90	100	134.5	137	109	176.5	71	G1	G1	¢7
ECH(S)(m)2-50	399.5	220.5	90	110	153.5	137	109	176.5	71	G1	G1	¢7
ECH(S)(m)2-60	417.5	238.5	90	110	171.5	137	109	176.5	71	G1	G1	Ф7

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Fan cover	08F
2	Fan	PP
3	Rear cover	ZL 102
4	Rotor	
5	Beaing	
6	Terminal box	ZL 102
7	Stator	
8	Front cover	Castion
9	Oultet body	Cast iron/ilis 304
10	Mechanical seal	SidCarbon
11	Difuser	AISI 304
12	Sleeve	AISI 304
13	Impeller	AIS 304
14	Pump body	Cast ironAl\| 3

Package Information

Model	$\underset{(\mathrm{Kgs})}{\mathrm{G}_{1}}$	$\mathrm{m}_{(\mathrm{mm})}^{\mathrm{L}}$	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	Quantity (PCS/20 TEU
ECH(S)(m)2-20	11.5	420	215	243	1215
ECH(S)(m)2-30	11.8	420	215	243	1215
ECH(S)(m)2-40	13.2	420	215	243	1215
ECH(S)(m)2-50	13.7	455	215	243	1170
ECH(S)(m)2-60	14.6	455	215	243	1170

ECH

ECHS

Application

- It is applicable to household water supply, equipment support, pipeline framing and poultry raising industrial and mreenhouse watering, drainage of enterprises and high-rise buildings, central air conditioner and centralized heating circulation system, etc.

Pump

- AISI 304 shaft
- Max. liquid temperature: $+85^{\circ}$
- Altitude: up to 1000 m
- Max. suction: 8 m
- Max. inlet pressure: limited by max. operating pressure

Motor

- Motor with copper winding
- Built-in thermal protector for single phase moto
- Insulation class: F
- Protection class: IP55
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Identification Codes
ECH (S) (m) 4-30

Technical Data

Model	Power		$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	1	2	3	4	5	6	7
	kW	HP	O($1 / \mathrm{min}$)	17	33	50	67	83	100	117
ECH(S)(m)4-20	0.55	0.75	$\underset{(m)}{\text { H }}$	17	16	15	13	12	10	8
ECH(S)(m)4-30	0.55	0.75		27	25	23	21	19	16	13
ECH(S)(m)4-40	0.75	1.0		36	34	32	28	26	22	17
ECH(S)(m)4-50	1.1	1.5		46	43	40	36	33	28	21
ECH(S)(m)4-60	1.1	1.5		55	52	48	43	39	33	26

Dimension												
Model	L1	L2	L3	L4	L5	B1	B2	H	H1	A1	A2	A3
ECH(S)(m)4-20	354	175.5	90	110	108.5	137	109	176.5	71	G14 ${ }^{\frac{1}{4}}$	G1	Ф7
$\mathrm{ECH}(\mathrm{S})(\mathrm{m}) 4-30$	381.5	203	90	110	136	137	109	176.5	71	G114	G1	Ф7
ECH(S)(m)4-40	408.5	230	90	110	163	137	109	176.5	71	G1 $1 \frac{1}{4}$	G1	¢7
$\mathrm{ECH}(\mathrm{S})(\mathrm{m}) 4-50$	484	266	100	130	190	165	125	204.5	80	G14 ${ }^{\frac{1}{4}}$	G1	\$10
ECH(S)(m)4-60	511.5	293.5	100	130	217.5	165	125	204.5	80	G14	G1	\$10

Hydraulic Performance Curves

No.	Part	Material
1	Fan cover	08F
2	Fan	PP
3	Rear cover	ZL 102
4	Rotor	
5	Beaing	
6	Terminal box	ZL 102
7	Stator	
8	Front over	Castion
9	Outte body	Castirionilis 304
10	Mechanical seal	SiclCarbon
11	Difluser	AIIS 304
12	Sleeve	AIIS 304
13	Impeller	AIIS 304
14	Pump body	Castion/AIII 304

Package Information

Model	$\mathbf{G} \mathbf{w}$ $(\mathbf{K g s})$	\mathbf{L} $(\mathbf{m m})$	\mathbf{w} $(\mathbf{m m})$	\mathbf{H} $(\mathbf{m m})$	Quantity $(\mathbf{P C S} / 20 \mathrm{TEU})$
$\mathrm{ECH}(\mathrm{S})(\mathrm{m}) 4-20$	13.1	420	215	243	1215
$\mathrm{ECH}(\mathrm{S})(\mathrm{m}) 4-30$	13.6	420	215	243	1215
$\mathrm{ECH}(\mathrm{S})(\mathrm{m}) 4-40$	14.7	455	215	243	1170
$\mathrm{ECH}(\mathrm{S})(\mathrm{m}) 4-50$	21.5	548	235	268	800
$\mathrm{ECH}(\mathrm{S})(\mathrm{m}) 4-60$	22	548	235	268	800

Application

- It is applicable to household water supply, equipment support, pipeline pressurization, garden watering, vegetable greenhouse watering, fish farming and poultry raising, industrial and mining, water supply and drainage of enterprises and high-rise buildings, central air conditioner and centralized heating circulation system, etc.

Pump

- AISI 304 shaft
- Max. liquid temperature: $+85^{\circ} \mathrm{C}$
- Altitude: up to 1000 m
- Max. suction: 8 m
- Max. inlet pressure: limited by max. operating pressure

Motor

- Motor with copper winding
- Buit in thermal protector for
- Insulation class: F
- Protection class: IP55
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Identification Codes

ECH (m) 10-30

- Single Phase (Three-phase without m)

Stainless Steel Horizontal Multistage Pump

Technical Data

Model	Power		$0\left(\mathrm{~m}^{3} / \mathrm{h}\right)$	6	7	8	9	10	11	12
	kW	HP	$\mathbf{0}(1 / \mathrm{min})$	100	117	133	150	167	183	200
$\mathrm{ECH}(\mathrm{m}) 10-10$	0.75	1.0	$\underset{(\mathrm{m})}{\mathrm{H}}$	9.1	8.7	8.2	7.7	6.8	5.8	-
$\mathrm{ECH}(\mathrm{m}) 10-20$				17.9	17.1	16.3	15.3	14.0	12.5	10.6
$\mathrm{ECH}(\mathrm{m}) 10-30$	1.1	1.5		27.1	26.3	24.9	23.4	21.4	19.3	16.9
$\mathrm{ECH}(\mathrm{m}) 10-40$	1.5	2.0		38.6	37.6	35.9	33.9	31.2	28.2	24.6
$\mathrm{ECH}(\mathrm{m}) 10-50$	2.2	3.0		47.8	46.4	44.4	42.2	39.5	35.9	31.1

Model	L1	L2	L3	L4	L5	B1	B2	H	H1	A1	A2	A3
ECH(m)10-10	430	212	100	130	121	165	125	204.5	80	G12	G14	¢10
ECH(m)10-20	430	212	100	130	121	165	125	204.5	80	G12	G11 ${ }^{\frac{1}{4}}$	¢10
$\mathrm{ECH}(\mathrm{m}) 10-30$	460.5	242.5	100	130	151.5	165	125	504.5	80	G12	G14	\$10
ECH(m)10-40	549.5	261.5	125	150	182	180	140	217.5	90	G12	G14	¢10
$\mathrm{ECH}(\mathrm{m}) 10-50$	579.5	291.5	125	150	212	180	140	217.5	90	G1 ${ }^{\frac{1}{2}}$	G11 ${ }^{\frac{1}{4}}$	Ф10

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Fan cover	08 F
2	Fan	PP
3	Rear cover	ZL 102
4	Rotor	
5	Beaing	
6	Teminal box	ZL 102
7	Stator	
8	Front cover	Castion
9	Outte body	Castion
10	Mechanical seal	SidCarbon
11	Difluser	Al\| 304
12	Sleeve	AIIS 304
13	Impeller	AIIS 304
14	Pump body	Castiron

Package Information

Model	$\underset{(\mathrm{Kgs})}{\left(\mathrm{Kgs}_{2}\right)}$	$\mathrm{m}_{(\mathrm{m})}^{\mathrm{L})}$	$\underset{(m \mathrm{~m})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \text { Quantity } \\ \text { (PCS/20 } \end{gathered}$
ECH(m) 10-10	20.7	503	235	268	856
ECH(m)10-20	20.8	503	235	268	856
ECH(m) 10-30	21.9	503	235	268	856
$\mathrm{ECH}(\mathrm{m}) 10-40$	28.2	618	245	283	653
$\mathrm{ECH}(\mathrm{m}) 10-50$	30.6	618	245	283	653

ECH

Application

- It is applicable to household water supply, equipment support, pipeline pressurization, garden watering, vegetable greenhouse watering, drainage of enterprises and high-rise buildings, central air conditione and centralized heating circulation system, etc. and centraized heating circulation system, etc.

Pump

- AISI 304 shaft
- Max. liquid temperature: $+85^{\circ}$
- Altitude: up to 1000 m
- Max. suction: 8 m
- Max. inlet pressure: limited by max. operating pressure

Motor

- Motor with copper winding
- Muilt-in thermal protector for single phase moto
- Insultation class: F
- Protection class: IP55
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Identification Codes

ECH (m) 15-20

Rated Flow (m^{3} / h)
Stainless Steel Horizonal Multistage Pum

Technical Data

Model	Power		$0\left(\mathrm{~m}^{3} / \mathrm{h}\right)$	9	12	15	18	21
	kW	HP	O (1/min)	150	200	250	300	350
$\mathrm{ECH}(\mathrm{m}) 15-10$	1.1	1.5	$\underset{(m)}{\text { H }}$	12.4	11.6	10.6	9.4	8.2
$\mathrm{ECH}(\mathrm{m}) 15-20$	2.2	3		25.6	24.1	22.7	21.1	18.8
ECH15-30	3.0	4		38.7	36.9	34.9	31.9	28.5
ECH15-40	4.0	5.5		51.8	49.7	46.8	42.9	38.3

Model	L1	L2	L3	L4	L5	B1	B2	H	H1	A1	A2	A3
$\mathrm{ECH}(\mathrm{m}) 15-10$	451	233.5	100	130	139.5	165	125	204.5	80	G 2	G 2	Ф10
$\mathrm{ECH}(\mathrm{m}) 15-20$	510	222	125	150	139.5	180	140	217.5	90	G 2	G 2	Ф10
$\mathrm{ECH} 15-30$	560	272	125	150	189.5	180	140	247.5	90	G 2	G 2	Ф10
$\mathrm{ECH} 15-40$	616	336.5	140	180	230	205	160	224.5	100	G 2	G 2	$\Phi 12$

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Fan cover	08 F
2	Fan	PP
3	Rear cover	ZL 102
4	Rotor	
5	Beaing	
6	Teminal box	ZL 102
7	Stator	
8	Front cover	Castion
9	Outte body	Castion
10	Mechanical seal	Sicicarbon
11	Difluser	AIIS 304
12	Sleve	AISI 304
13	Impeller	AISI 304
14	Pump body	Castion

Package Information

Model		(mm)	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \text { Quantity } \\ \text { (PCS/20'TEU } \end{gathered}$
ECH(m)15-10	22.7	503	235	268	856
ECH(m)15-20	30.3	557	245	283	659
ECH15-30	32.2	618	245	283	620
ECH15-40	39.6	687	245	290	504

Application

- It is applicable to household water supply, equipment support, pipeline It is applicable to household water supply, equipment support, pipeline
pressurization, garden watering, vegetable greenhouse watering, fish pressurization, garden watering, vegetable greenhouse watering, fish
farming and poultry raising, industrial and mining, water supply and farming and poultry raising, industrial and mining, water supply and
drainage of enterprises and high-rise buildings, central air conditioner and centralized heating circulation system, etc.

ECH

Pump

- AISI 304 shaft
- Max. liquid temperature: $+85^{\circ} \mathrm{C}$
- Altitude: up to 1000 m
- Max. suction: 8 m
- Max. inlet pressure: limited by max. operating pressure

Motor

- Motor with copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Insulation class: F
Protection class: IP55
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Identification Codes
ECH (m) 20-20

Technical Data

Model	Power		0 ($\mathrm{m}^{3} / \mathrm{h}$)	12	16	20	24	28
	kW	HP	$\mathbf{0}(1 / \mathrm{min})$	200	267	333	400	467
ECH(m)20-10	1.1	1.5	$\underset{(m)}{\text { H }}$	12.1	10.8	9.5	7.8	5.7
ECH(m)20-20	2.2	3		26.1	24.4	22.4	19.8	17.2
ECH20-30	4.0	5.5		39.9	38.0	35.5	31.4	26.9
ECH20-40				52.7	50.1	45.9	40.3	34.0

Model	L1	L2	L3	L4	L5	B1	B2	H	H1	A1	A2	A3
ECH $(\mathrm{m}) 20-10$	451	233.5	100	130	139.5	165	125	204.5	80	G2	G 2	Ф10
$\mathrm{ECH}(\mathrm{m}) 20-20$	510	222	125	150	139.5	180	140	217.5	90	G 2	G 2	$\Phi 10$
$\mathrm{ECH} 20-30$	570.5	291	140	180	184.5	205	160	224.5	100	G 2	G 2	$\Phi 12$
$\mathrm{ECH} 20-40$	616	336.5	140	180	230	205	160	224.5	100	G 2	G 2	$\Phi 12$

Hydraulic Performance Curves

Materials Table

No.	Part	Material
1	Fan cover	08 F
2	Fan	PP
	Rear cover	ZL 102
4	Rotor	
5	Beaing	
6	Teminal box	ZL 102
7	Stator	
8	Front cover	Castion
9	Outiet body	Castion
10	Mechanical seal	SidCarbon
11	Difluser	AIIS 304
12	Sleeve	AISI 304
13	Impeller	AIIS 304
14	Pump body	Castion

Package Information

Model	$\underset{(\mathrm{Kgs})}{\substack{\mathrm{ow}}}$	(mm)	$\underset{(m m)}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \text { Quantity } \\ \text { (PCS/20 TEU } \end{gathered}$
ECH(m)20-10	22.7	503	235	268	856
ECH(m)20-20	30.3	557	245	283	659
ECH20-30	38.9	687	245	290	513
ECH20-40	39.4	687	245	290	504

EST

Application

- Circulation and transfer of clean, chemically
non-aggressive water and other liquids
- Water supply \& irigation
- Water circulation in air conditioning systems

Operating conditions

- Delivery: up to $210 \mathrm{~m}^{3} / \mathrm{h}$
- Head: up to 100 m
- Liquid temperature

Standard: $-10^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Upon request: $-20^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$

- Maximum operating pressure: 12 bar (PN12)

Anti-clockwise rotation when facing pump's suction port

- Impeller: AISI304/HT200
- Mechanical seal in compliance with DIN 24960
- Lubricated by internal recirculating pumped liquid
- Counter flange available on request

Motor

- Closed construction, external ventilatio
- Insulation class: F
- Protection class: IP54
- Performance in compliance with CEI 2-3 (IEC 34.1)
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$

Construction features

- Single-impeller centrifugal pump featuring axial intake and radial discharge
- Inlet and outtet DN in compliance
with EN 733 (ex DIN 24255) and UN1 7467
- Flanges in compliance with UNI 2236 and DIN 2532 Rear entry (impeller, control valve and motor can be extracted without disconnecting the pump body from the pipes)

Rated Power ($1 / 10 \mathrm{~kW}$) Extented Model
Impeller Nominal Diameter (mm Outlet Diameter (mm) Single Phase (m is omitted for three-phase) Standard Centrifugal Pump

Materials Table

No.	Part	Material
1	Motor	
2	Support	HT 200
3	Pump shatt	Steelalis 104
4	Mechanical seal	Carbon/Slicon carbide
5	Impeller	HT 200/Stainless Steel
6	Nut	AIIS 304
7	Pump body	HT 200
8	Flange	HT 200

How to Read The Curve Charts

PUMP TYPE	POWER		$1 / \mathrm{min}$	Q=DELIVERY																			
			0	\| 100	150	250	300	400	450	600	700	800	900	1200	1400	1500\|	1800	\| 2000	\|2300		3000	3500	
	kW	HP		0	6	9	15	18	24	27	36	42	48	54	72	84	90	108	120	138	180	210	
32-125/7*	0.75	1			17.5	16.7	15	12	9														
32-125/11*	1.1	1.5		22	21	20.2	17	15	9														
32-160/15*	1.5	2		24	23.7	22.5	19.5	16.2															
32-160/22*	2.2			31	29.6	29	25.5	22.5	15														
32-160/30*	3	4		34.5	33.5	33	29	26.5	20	16.5													
32-200/30*	3	4		43.2	42	40.5	35.2	32.2	24.6	19.8													
32-200/40*	4	5.5		52	50.5	50	45	41.9	35	30.3													
32-250/55*	5.5	7.5		79	74.7	71.8	63	56	37.5														
32-250/75*	7.5	10		95	92	89	82	75	57.8														
40-125/11	1.1	1.5		14.7				13	11.5	10.1													
40-125/15	1.5	2		18.1				17	15	13.9													
40-125/22	2.2	3		24.5				23.2	21.5	20.2	16	12											
40-160/30	3	4		31.8				29	27.5	26.3	21.5	17.5											
40-160/40	4	5.5		38				36	34	33	28.5	25	20.1										
40-200/55*	5.5	7.5		44				42	40	38	32	27											
40-200/75*	7.5	10		55				52	49	48	42	37	32										
40-250/92*	9.2	12.5		64				59	56.5	55	49.5	45	39.8										
40-250/110*	11	15		72				67.5	65	63.5	57.5	52.2	47										
40-250/150*	15	20		82				79	77.3	76.5	71	66	60.5										
50-125/22	2.2	3		17							15.4	14	12.8	11.5									
50-125/30	3			20							18.8	18	17	15.6									
50-125/40	4	5.5		24							23.1	22.6	21.5	20.3	15.8								
50-160/55	5.5	7.5		32							30.6	30	28	26.6	20.5								
50-160/75	7.5	10		40							38	37	36	34.4	29								
50-200/92*	9.2	12.5	(m)	50.5							46.8	45	43	40.9	32.5								
50-200/110*	11	15		57.5							53.5	52	50	47.5	40								
50-250/150*	15	20		68.5							64	63	61.5	59	50	41							
50-250/185*	18.5	25		77							73.2	72	70	68	60.5	51.5							
50-250/220*	22	30		86.3							83	81.5	80	78	70	61							
65-125/40	4	5.5		19									17.3	16.8	14.5	13	11.8						
65-125/55	5.5	7.5		23									21.3	20.9	19	17.5	16.7	13.7					
65-125/75	7.5	10		27									26	25.6	24.5	23	22.5	20	18				
65-160/92	9.2	12.5		33										31.5	30	28	27.1	24	21.5				
65-160/110	11	15		36										34.5	33	31.5	30.8	28	25.5				
65-160/150	15	20		42										41	40	38.5	37.8	35	33				
65-200/150	15	20		45.5										46	43.5	41	39.2	33					
65-200/185	18.5	25		53										53.5	51.2	48.3	47	41.5					
65-200/220	22	30		59										59.5	57.2	54	53	47	43.5				
65-200K/185	18.5	25		41.2											42	41.2	40.6	38.2	36.5	34			
65-200K/220	22	30		48												48	47.5	46	44	41			
$65-200 \mathrm{~K} / 300$	30	40		59.5												59	58.5	58	56.2	54			
65-25 0/220	22	30		62										61.5	58.2	56.5	54	49	45				
65-250/300	30	40		76										75	73	70	69	64	61	54			
65-250/370	37	50		90										88	86	84	82	78	74	68			
80-160/110	11	15		27													27.3	26	24.5	22.5	16		
80-160/150	15	20		32.8													32.5	31.3	30.2	28	22.1	16.7	
80-160/185	18.5	25		39													38	36.8	35.7	33.8	28.8	23.5	
80-200/220	22	30		48													47.5	46	43.5	41	32.5		
80-200/300	30	40		60													59.5	58	57	54.5	47		
80-250/370	37	50		71.5													70.5	67.5	65.5	61.5	49.5	38	
80-250/450	45	61		82													80.5	78.5	76.5	72	62	51	
80-250/550	55	75		95													93.5	91.2	89.8	86.8	77.6	68.3	

Characteristic Curves

EST	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 32-125	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 32-160	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 32-200	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 32-250	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 40-125	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 40-160	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 40-200	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 40-250	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 50-125	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 50-160	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 50-200	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

Hydraulic Performance Curves

EST 65-125	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 65-160	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 65-200	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 65-200K	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 65-250	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 80-160	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 80-200	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Hydraulic Performance Curves

EST 80-250	$\sim 2900 \mathrm{rpm}$	ISO 9906 Annex A

Flange Dimensions

Installation Sketch
 up to 7.5 kW included

Installation Sketch

From 7.5 kW

\section*{| Connectors |
| :---: |
| on request |}

Application

It is widely used for

- Pressure boosting for domestic water supply
- Floor heating system
- Solar pumping system

Pump

- Automatic pressure boosting
- Anti-rust cast iron pump body
- Noryl impeller with heat resistance up to 150°
- 99% alumina ceramic shaft
- Liquid temperature: $2^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$

Motor

- Insulation class: H
- Protection class: IP42
- 99% alumina ceramic bearing
- Copper winding

MODEL	Voltage/Frequency	Power(W)	Max. Flow $($ (/min)	Max. Head (m)	InletOutlet (mm)	Pipe Size $($ (inch $)$
ERP15-90A/160	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	123	25	9	$\Phi 15$	$1 / 2$

Materials Table

No.	Part	Material
1	Rotor	
2	Thusst bearing afusting mat	Nory
3	Thuss beaing ubber mat	Sticioon nuber
4	Thust bearing	Graphite
5	Front bearing	Alumina
6	Pump support cover	Stainless steel
7	Check ball	Stilicon nuber
8	Impeller	PPO
9	Pump body	Castironbronze
10	Pump body insert	Stainless steel
11	Body gasket	
12	Rear beaing	нт200
13	Can brg asm	Stainless steel
14	Can brg asm seal	Silicon nuber
15	Stator cover(front)	PA66
16	Motor stator with winding	
17	Stator cover(back)	PA66
18	Housing	ADC12
19	Cable outlet nut	ABS
20	Button	ABS
21	Terminal box	PA6
22	Regulation swich	
23	Capacitor	
24	Teminal cover	ABS
25	Flow switch assembly	

Dimension Drawing

Identification Codes

ERP 15-90A/160

Application

- It is widely used for heating ventilating and air conditioning
(HVAC) circulation, pressure boosting of hot water in family, homes powered by solar energy, industrial auxiliary equipment cold and hot water circulation and so forth
- Water circulation for the central and district heating system
- Domestic hot water circulation

Pump

- Bronze or anti-rust cast iron pump body
- Noryl impeller with heat resistance up to $150^{\circ} \mathrm{C}$
- 99% alumina ceramic shaft
- Liquid temperature: $2^{\circ} \mathrm{C}-110$

Motor

- Insulation class: H
- Protection class: IP44
-99\% alumina ceramic bearing
- Three speed motor

MODEL	$\underset{(m m)}{A}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(m m)}{c}$	D
ERP15-40/130	130	130	125	G1
ERP15-40B/130	130	130	12	G1
20-4	130	130	125	G1.2
P25-40/130	130	130	125	G1.5
ERP25-40/180	130	180	125	G1.5
ERP32-40/180	135	180	125	G2
ERP15-50/130	130	130	125	G1
ERP15-50B/130	130	130	125	G1
ERP20-50/130	130	130	125	G1.2
ERP25-50/130	130	130	125	G1
ERP25-50/180	130	180	125	G1
50/180	135	180	125	G2
0/130	130	130	125	G1
ERP15-60B/130	130	130	125	G1
ERP20-60/130	130	130	125	G1.2
ERP25-60/130	130	130	125	G1.5
ERP25-60/1	130	180	125	G1,5
RP32-60/180	135	180	125	G2
ERP25-70/130	130	130	125	G1.5
ERP25-70/180	130	180	125	G1. 5
ERP32-70/180	135	180	125	G2
ERP25-80/100	154	180	134	
ERP25-120/180	155	180	148	G1. 5
ERP32-80/180	168	180	137	

Dimension Drawing

MODEL	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	F (mm)
ERP32-80F/220	220	150	191.5	70.7	$\Phi 19$	$\Phi 100$
ERP36-80F/200	200	138	174.5	63.6	11.5	$\mathbf{\Phi 9 0}$
ERP40-80F/250	250	155	196.5	77.8	$\Phi 19$	$\Phi 110$

MODEL	POWER	POWER (W)			Max. Flow ($1 / \mathrm{min}$)	Max. Head (m)	IneVOutlet (mm)	Pipe Size (inch)	$\underset{(\mathrm{kgs})}{\mathrm{N} . \mathrm{S}}$	${ }_{(\mathrm{k} \text { (kss).w. }}$	Packing Size (mm)
		3	2	1							
ERP15-40/130	1~230V/50	74	54	34	40/30/22	4.0/3.3/2.3	¢15	1	2.32	2.45	$154 \times 143 \times 153$
ERP15-40B/130	$1 \sim 230 \mathrm{~V} / 5 \mathrm{~Hz}$	74	54	34	40/30/22	4.0/3.3/2.3	¢15	1	2.4	2.54	$154 \times 143 \times 153$
ERP20-40/130	$1 \sim 230 \mathrm{~V} / 5 \mathrm{~Hz}$	74	54	34	45/35/25	4.0/3.3/2.3	© 20	1.25	2.37	2.5	$154 \times 143 \times 153$
ERP21-40F/120	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	74	54	34	55/42/30	4.0/3.3/2.3	021	1.25	2.65	2.78	$154 \times 143 \times 153$
ERP25-40/130	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	74	54	34	52/42/30	4.0/3.3/2.3	© 25	1.5	2.44	2.57	$154 \times 143 \times 153$
ERP25-40/180	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	74	54	34	55/42/30	4.0/3.3/2.3	025	1.5	2.55	2.705	$198 \times 143 \times 160$
ERP32-40/180	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	74	54	34	55/42/30	4.0/3.3/2.3	©32	2	2.73	2.885	$198 \times 143 \times 160$
ERP15-50/130	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	85	60	40	40/32/23	4.5/3.8/2.5	¢15	1	2.32	2.45	$154 \times 143 \times 153$
ERP15-50B/130	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	85	60	40	40/32/23	4.5/3.8/2.5	¢15	1	2.41	2.54	$154 \times 143 \times 153$
ERP20-50/130	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	85	60	40	47/37/25	4.5/3.8/2.5	020	1.25	2.37	2.5	$154 \times 143 \times 153$
ERP21-50F/120	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	85	60	40	58/45/32	4.5/3.8/2.5	021	1.25	2.65	2.78	$154 \times 143 \times 153$
ERP25-50/130	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	85	60	40	55/43/28	4.5/3.8/2.5	025	1.5	2.44	2.57	$154 \times 143 \times 153$
ERP25-50/180	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	85	60	40	60/47/32	4.5/3.8/2.5	©25	1.5	2.55	2.705	$198 \times 143 \times 160$
ERP32-50/180	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	85	60	40	60/47/32	4.5/3.8/2.5	© 32	2	2.73	2.885	$198 \times 143 \times 160$
ERP15-60/130	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	96	69	45	40/32/23	5.5/4.5/2.8	015	1	2.32	2.45	$154 \times 143 \times 153$
ERP15-60B/130	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	96	69	45	40/32/23	5.5/4.5/2.8	©15	1	2.41	2.54	$154 \times 143 \times 153$
ERP20-60/130	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	96	69	45	53/37/25	5.5/4.5/2.8	© 20	1.25	2.37	2.5	$154 \times 143 \times 153$
ERP21-60F/120	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	96	69	45	60/45/32	5.5/4.5/2.8	©21	1.25	2.65	2.78	$154 \times 143 \times 153$
ERP25-60/130	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	96	69	45	58/43/28	5.5/4.5/2.8	© 25	1.25	2.44	2.57	$154 \times 143 \times 153$
ERP25-60/180	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	96	69	45	66/47/32	5.5/4.5/2.8	©25	1.5	2.55	2.705	$198 \times 143 \times 160$
ERP32-60/180	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	96	69	45	66/47/32	5.5/4.5/2.8	©32	2	2.73	2.885	$198 \times 143 \times 160$
ERP21-70F/120	$1-230 \mathrm{~V} / 50 \mathrm{~Hz}$	150	130	105	67/50/37	6.3/6.0/5.2	© 21	1.5	2.65	2.805	$154 \times 143 \times 153$
ERP25-70/130	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	150	130	105	67/50/37	6.3/6.015.2	025	1.5	2.45	2.605	$154 \times 143 \times 153$
ERP25-70/180	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	150	130	105	67/50/37	6.3/6.0/5.2	©25	1.5	2.57	2.725	$198 \times 143 \times 160$
ERP32-70/180	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	150	130	105	67/50/34	6.3/6.0/5.2	©32		2.75	2.905	$198 \times 143 \times 160$
ERP25-80/180	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	200	190	160	120/100/60	7.1/6.5/5.5	© 28	1.5	4.23	4.57	192x170×190
ERP32-80/180	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	270	245	160	170/100/60	7.3/6.7/5.4	042	2	4.75	5.09	$192 \times 170 \times 190$
ERP32-80F/220	$1-230 \mathrm{~V} / 50 \mathrm{~Hz}$	270	245	160	170/113/65	7.3/6.7/5.4	¢42	1.25	7.57	8	$235 \times 181 \times 207$
ERP36-80F/200	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	270	245	160	170/113/65	7.3/6.7/5.4	©42	1.25	5.98	6.36	$264 \times 186 \times 212$
ERP40-80F/250	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	270	245	160	170/113/65	7.3/6.7/5.4	©42	1.25	8.27	8.74	192x170×190
ERP25-120/180	$1 \sim 230 \mathrm{~V} / 50 \mathrm{~Hz}$	270	245	160	67/38/22.5	11.5/10/6.3	¢18	1.5	4.62	4.96	$192 \times 170 \times 190$

Hydraulic Performance Curves

Hydraulic Performance Curves

Hydraulic Performance Curves

ERP15-508//130
ERP15-50/130
-H

coperition
ERP20-50/130
-_a. ${ }_{\text {Q. }}^{\text {. }}$

Hydraulic Performance Curves

Capacity $a-$
ERP25-50/180
-_ ${ }_{\mathrm{Q}}^{\mathrm{Q} \cdot \mathrm{P}}$

ERP15-60B//130
ERP15-6/130

Capacity a -
ERP32-50/180
———are

ERP20-60/130
ERP20-60/130

Hydraulic Performance Curves

ERP21-60F/120
$=-\mathrm{Q}=\mathrm{a}-\mathrm{p}$

ERP25-60/180
———are ${ }_{a}^{\mathrm{Q} \cdot \mathrm{P}}$

ERP25-60/130
-_ ${ }_{\text {Q. }}^{\text {Q. }}$

Hydraulic Performance Curves

Hydraulic Performance Curves

capacity Q -

ERP25-120/180
$=-\mathrm{a}-\mathrm{H}$

ERP32-80/180
ERP32-80/180
ERP36-80F/200
$={ }_{\text {Q.P }}^{\text {Q. }}{ }^{\text {P }}$

Tank

Model	$\underset{\substack{\text { Prossure } \\ \text { (bar) }}}{\text { Max }}$	$\begin{gathered} \text { Nominal } \\ \text { Copacaly } \\ \text { (L) } \end{gathered}$	$\begin{gathered} \text { Actual } \\ \text { Capacity } \\ \text { (L) } \end{gathered}$	Membrane	Max. Temp	Connection
24ST	8	24	20	EPDM	996	G1"
24STT	8	24	24	EPDM	$99^{\circ} \mathrm{C}$	$61{ }^{\prime}$
The serice iffe of the membrane is 50,000 cycles.						

Model	$\boldsymbol{c}_{\substack{\text { Prossax } \\ \text { (bare }}}$	$\begin{aligned} & \text { Nominal } \\ & \text { Capacity } \\ & \text { (L) } \end{aligned}$	$\begin{gathered} \text { Actual } \\ \text { Capacily } \\ \text { (L) } \end{gathered}$	Membrane	Max. Temp	Connection
2 VT	8	2	2	EPDM	99°	6112"
4 VT	8	4	4	EPDM	99%	61"
${ }^{\text {8VT }}$	8	8	8	N.R	$60^{\circ} \mathrm{C}$	610
19VT	8	19	18	EPDM	$9^{9} \mathrm{C}$	$61{ }^{1}$
24 VT	8	24	20	EPDM	99%	610
24 VIT	8	24	24	EPDM	$99^{\circ} \mathrm{C}$	G1"

Model		$\begin{aligned} & \text { Nominal } \\ & \text { Copacaity } \\ & \text { (L) } \end{aligned}$	$\underset{\substack{\text { Actual } \\ \text { Capacity } \\ \text { (L) }}}{\text { and }}$	Membrane	Max. Temp	Connection
19CT	8	19	18	EPDM	99°	610
24 CT	8	24	20	EPDM	99%	G1"
24 CT	8	24	24	EPPM	99\%	610
50CT	8	50	36	EPDM	99°	610
50CTT	8	50	50	EPDM	99°	610
60CTT	8	60	60	EPDM	99%	61"
100CT	8	100	80	EPDM	99%	$61{ }^{1}$
100CTT	8	100	100	EPDM	99°	610

Model		Nominal Capacity (c)	$\begin{aligned} & \text { Actual } \\ & \text { Capacity } \\ & \text { (L) } \end{aligned}$	Membrane	Max. Temp	Connection
50FT	8	50	36	EPDM	99°	G1"
50FTT	8	50	50	EPDM	${ }^{99} \mathrm{C}$	G1"
60FTT	8	60	60	EPDM	$99^{\circ} \mathrm{C}$	G1"
100FT	8	100	80	EPDM	${ }^{99} \mathrm{C}$	61"
100FTT	8	100	100	EPDM	$99^{\circ} \mathrm{C}$	$61{ }^{1}$
The sevice life of the membrane is 50,000 cydes.						

3-Way/5-Way

5TA
5TB

Foot Valve

FVA

Filter

Pressure Switch

Pressure Gauge

- Two connection types: (1)G1/4" (2)M10×1
- For 40 mm gauge, the scale: $0-6$ bar
- For 50 mm gauge, the scale: $0-6$ bar or $0-10$ bar or 0.12 bar
- Backkootom connection

Float Switch

Åquastrong

\qquad

